Search results
Results from the WOW.Com Content Network
Engineers have used DIANA to design dams and dikes, tunnels and analyze underground structures, oil and gas, [1] historical constructions, and large reinforced concrete structures. [2] Some specialized analyses available in DIANA for these fields of use include seismic analysis, [ 3 ] fire analysis, and young hardening concrete.
Logo of Eurocode 2 An example of a concrete structure. In the Eurocode series of European standards (EN) related to construction, Eurocode 2: Design of concrete structures (abbreviated EN 1992 or, informally, EC 2) specifies technical rules for the design of concrete, reinforced concrete and prestressed concrete structures, using the limit state design philosophy.
(2) The thermal expansion coefficients of concrete and steel are so close (1.0 × 10 −5 to 1.5 × 10 −5 for concrete and 1.2 × 10 −5 for steel) that the thermal stress-induced damage to the bond between the two components can be prevented. (3) Concrete can protect the embedded steel from corrosion and high-temperature induced softening.
The durability design of reinforced concrete structures has been recently introduced in national and international regulations. It is required that structures are designed to preserve their characteristics during the service life, avoiding premature failure and the need of extraordinary maintenance and restoration works.
ACI 318 Building Code Requirements for Structural Concrete provides minimum requirements necessary to provide public health and safety for the design and construction of structural concrete buildings. [6] It is issued and maintained by the American Concrete Institute. [7] The latest edition of the code is ACI 318-19.
The reinforced concrete will continue to carry the load provided that sufficient reinforcement is present. A typical design problem is to find the smallest amount of reinforcement that can carry the stresses on a small cube (Fig. 1). This can be formulated as an optimization problem.
A reinforced concrete column is a structural member designed to carry compressive loads, composed of concrete with an embedded steel frame to provide reinforcement. For design purposes, the columns are separated into two categories: short columns and slender columns.
[8] [9] They are erected to reinforce cages around which concrete is printed to form wall and beam elements, making rebars an effective pre-installment strategy. [10] A bunch of rebars. The rebar-based formative skeletal structure can also act as a core on which printable concrete is shotcreted in a new method developed at TU Braunschweig. [11]