enow.com Web Search

  1. Ads

    related to: parallel lines real life examples of obtuse angles around the house worksheet
  2. education.com has been visited by 100K+ users in the past month

    • Educational Songs

      Explore catchy, kid-friendly tunes

      to get your kids excited to learn.

    • Digital Games

      Turn study time into an adventure

      with fun challenges & characters.

Search results

  1. Results from the WOW.Com Content Network
  2. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    The group of constructible angles is closed under the operation that halves angles (which corresponds to taking square roots in the complex numbers). The only angles of finite order that may be constructed starting with two points are those whose order is either a power of two, or a product of a power of two and a set of distinct Fermat primes ...

  3. Parallel (geometry) - Wikipedia

    en.wikipedia.org/wiki/Parallel_(geometry)

    Since these are equivalent properties, any one of them could be taken as the definition of parallel lines in Euclidean space, but the first and third properties involve measurement, and so, are "more complicated" than the second. Thus, the second property is the one usually chosen as the defining property of parallel lines in Euclidean geometry ...

  4. Non-Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Non-Euclidean_geometry

    The summit angles of a Saccheri quadrilateral are acute if the geometry is hyperbolic, right angles if the geometry is Euclidean and obtuse angles if the geometry is elliptic. The sum of the measures of the angles of any triangle is less than 180° if the geometry is hyperbolic, equal to 180° if the geometry is Euclidean, and greater than 180 ...

  5. Geometry - Wikipedia

    en.wikipedia.org/wiki/Geometry

    Acute (a), obtuse (b), and straight (c) angles. The acute and obtuse angles are also known as oblique angles. Euclid defines a plane angle as the inclination to each other, in a plane, of two lines which meet each other, and do not lie straight with respect to each other. [ 43 ]

  6. Angle of parallelism - Wikipedia

    en.wikipedia.org/wiki/Angle_of_parallelism

    János Bolyai discovered a construction which gives the asymptotic parallel s to a line r passing through a point A not on r. [1] Drop a perpendicular from A onto B on r. Choose any point C on r different from B. Erect a perpendicular t to r at C. Drop a perpendicular from A onto D on t. Then length DA is longer than CB, but shorter than CA.

  7. Parallel postulate - Wikipedia

    en.wikipedia.org/wiki/Parallel_postulate

    Two lines that are parallel to the same line are also parallel to each other. In a right-angled triangle, the square of the hypotenuse equals the sum of the squares of the other two sides (Pythagoras' theorem). [6] [7] The law of cosines, a generalization of Pythagoras' theorem. There is no upper limit to the area of a triangle. (Wallis axiom) [8]

  8. Line (geometry) - Wikipedia

    en.wikipedia.org/wiki/Line_(geometry)

    For a convex quadrilateral with at most two parallel sides, the Newton line is the line that connects the midpoints of the two diagonals. [7] For a hexagon with vertices lying on a conic we have the Pascal line and, in the special case where the conic is a pair of lines, we have the Pappus line. Parallel lines are lines in the same plane that ...

  9. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    The parallel postulate (Postulate 5): If two lines intersect a third in such a way that the sum of the inner angles on one side is less than two right angles, then the two lines inevitably must intersect each other on that side if extended far enough.

  1. Ads

    related to: parallel lines real life examples of obtuse angles around the house worksheet