enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. A* search algorithm - Wikipedia

    en.wikipedia.org/wiki/A*_search_algorithm

    Algorithm A is optimally efficient with respect to a set of alternative algorithms Alts on a set of problems P if for every problem P in P and every algorithm A′ in Alts, the set of nodes expanded by A in solving P is a subset (possibly equal) of the set of nodes expanded by A′ in solving P.

  3. Pathfinding - Wikipedia

    en.wikipedia.org/wiki/Pathfinding

    Dijkstra's algorithm; A* search algorithm, a special case of the Dijkstra's algorithm; D* a family of incremental heuristic search algorithms for problems in which constraints vary over time or are not completely known when the agent first plans its path

  4. Any-angle path planning - Wikipedia

    en.wikipedia.org/wiki/Any-angle_path_planning

    Real-world and many game maps have open areas that are most efficiently traversed in a direct way. Traditional algorithms are ill-equipped to solve these problems: A* with an 8-connected discrete grid graph (2D; 26 for the 3D triple cubic graph) is very fast, but only looks at paths in 45-degree increments. This behavior gives on average 8% ...

  5. Iterative deepening A* - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_A*

    Iterative deepening A* (IDA*) is a graph traversal and path search algorithm that can find the shortest path between a designated start node and any member of a set of goal nodes in a weighted graph. It is a variant of iterative deepening depth-first search that borrows the idea to use a heuristic function to conservatively estimate the ...

  6. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    Dijkstra's algorithm (/ ˈ d aɪ k s t r ə z / DYKE-strəz) is an algorithm for finding the shortest paths between nodes in a weighted graph, which may represent, for example, a road network. It was conceived by computer scientist Edsger W. Dijkstra in 1956 and published three years later.

  7. Maze-solving algorithm - Wikipedia

    en.wikipedia.org/wiki/Maze-solving_algorithm

    Robot in a wooden maze. A maze-solving algorithm is an automated method for solving a maze.The random mouse, wall follower, Pledge, and Trémaux's algorithms are designed to be used inside the maze by a traveler with no prior knowledge of the maze, whereas the dead-end filling and shortest path algorithms are designed to be used by a person or computer program that can see the whole maze at once.

  8. Travelling salesman problem - Wikipedia

    en.wikipedia.org/wiki/Travelling_salesman_problem

    Solution of a travelling salesman problem: the black line shows the shortest possible loop that connects every red dot. In the theory of computational complexity, the travelling salesman problem (TSP) asks the following question: "Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the ...

  9. Shortest path problem - Wikipedia

    en.wikipedia.org/wiki/Shortest_path_problem

    Shortest path (A, C, E, D, F), blue, between vertices A and F in the weighted directed graph. In graph theory, the shortest path problem is the problem of finding a path between two vertices (or nodes) in a graph such that the sum of the weights of its constituent edges is minimized.