Search results
Results from the WOW.Com Content Network
velocity in terms of the speed of light c: unitless beta particle: gamma: Lorentz factor: unitless photon: gamma ray: shear strain: radian heat capacity ratio: unitless surface tension: newton per meter (N/m) delta: change in a variable (e.g. ) unitless Laplace operator: per square meter (m −2)
When a variable with an exponent or in a function is covered, the corresponding inverse is applied to the remainder, i.e. = and = . More Magic Triangle image mnemonics in the style of a cheat-sheet for high-school physics – in the SVG file, hover over a symbol for its meaning and formula.
Ratio of flow velocity to the local speed of sound unitless: 1: Magnetic flux: Φ: Measure of magnetism, taking account of the strength and the extent of a magnetic field: weber (Wb) L 2 M T −2 I −1: scalar Mass fraction: x: Mass of a substance as a fraction of the total mass kg/kg 1: intensive (Mass) Density (or volume density) ρ: Mass ...
chemical physics A branch of chemistry and physics that studies chemical processes from the point of view of physics by investigating physicochemical phenomena using techniques from atomic and molecular physics and condensed matter physics. chromatic aberration circular motion classical mechanics. Also called Newtonian mechanics.
chemistry (ratio of activation energy to thermal energy) [1] Atomic weight: M: chemistry (mass of one atom divided by the atomic mass constant, 1 Da) Bodenstein number: Bo or Bd = / = chemistry (residence-time distribution; similar to the axial mass transfer Peclet number) [2]
Speed, the scalar magnitude of a velocity vector, denotes only how fast an object is moving, while velocity indicates both an object's speed and direction. [3] [4] [5] To have a constant velocity, an object must have a constant speed in a constant direction. Constant direction constrains the object to motion in a straight path thus, a constant ...
In mechanical systems, the position coordinates and velocities of mechanical parts are typical state variables; knowing these, it is possible to determine the future state of the objects in the system. In thermodynamics, a state variable is an independent variable of a state function.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.