enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  3. Thrust-to-weight ratio - Wikipedia

    en.wikipedia.org/wiki/Thrust-to-weight_ratio

    The thrust-to-weight ratio is usually calculated from initial gross weight at sea level on earth [6] and is sometimes called thrust-to-Earth-weight ratio. [7] The thrust-to-Earth-weight ratio of a rocket or rocket-propelled vehicle is an indicator of its acceleration expressed in multiples of earth's gravitational acceleration, g 0. [5]

  4. Specific impulse - Wikipedia

    en.wikipedia.org/wiki/Specific_impulse

    The specific impulse of a rocket can be defined in terms of thrust per unit mass flow of propellant. This is an equally valid (and in some ways somewhat simpler) way of defining the effectiveness of a rocket propellant. For a rocket, the specific impulse defined in this way is simply the effective exhaust velocity relative to the rocket, v e ...

  5. Orbital maneuver - Wikipedia

    en.wikipedia.org/wiki/Orbital_maneuver

    Rocket mass ratios versus final velocity calculated from the rocket equation. The Tsiolkovsky rocket equation, or ideal rocket equation, can be useful for analysis of maneuvers by vehicles using rocket propulsion. [2] A rocket applies acceleration to itself (a thrust) by expelling part of its mass at high speed. The rocket itself moves due to ...

  6. Delta-v - Wikipedia

    en.wikipedia.org/wiki/Delta-v

    Delta-v is typically provided by the thrust of a rocket engine, but can be created by other engines. The time-rate of change of delta-v is the magnitude of the acceleration caused by the engines, i.e., the thrust per total vehicle mass. The actual acceleration vector would be found by adding thrust per mass on to the gravity vector and the ...

  7. Characteristic velocity - Wikipedia

    en.wikipedia.org/wiki/Characteristic_velocity

    Characteristic velocity or , or C-star is a measure of the combustion performance of a rocket engine independent of nozzle performance, and is used to compare different propellants and propulsion systems. c* should not be confused with c, which is the effective exhaust velocity related to the specific impulse by: =. Specific impulse and ...

  8. Variable-mass system - Wikipedia

    en.wikipedia.org/wiki/Variable-mass_system

    Rocket mass ratios versus final velocity calculated from the rocket equation Main article: Tsiolkovsky rocket equation The ideal rocket equation , or the Tsiolkovsky rocket equation, can be used to study the motion of vehicles that behave like a rocket (where a body accelerates itself by ejecting part of its mass, a propellant , with high speed).

  9. Spacecraft flight dynamics - Wikipedia

    en.wikipedia.org/wiki/Spacecraft_flight_dynamics

    The thrust of a rocket engine, in the general case of operation in an atmosphere, is approximated by: [3] = ˙ = ˙ + where, ˙ is the exhaust gas mass flow is the effective exhaust velocity (sometimes otherwise denoted as c in publications)