enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  3. Specific impulse - Wikipedia

    en.wikipedia.org/wiki/Specific_impulse

    The specific impulse of a rocket can be defined in terms of thrust per unit mass flow of propellant. This is an equally valid (and in some ways somewhat simpler) way of defining the effectiveness of a rocket propellant. For a rocket, the specific impulse defined in this way is simply the effective exhaust velocity relative to the rocket, v e ...

  4. Impulse (physics) - Wikipedia

    en.wikipedia.org/wiki/Impulse_(physics)

    In the case of rockets, the impulse imparted can be normalized by unit of propellant expended, to create a performance parameter, specific impulse. This fact can be used to derive the Tsiolkovsky rocket equation , which relates the vehicle's propulsive change in velocity to the engine's specific impulse (or nozzle exhaust velocity) and the ...

  5. Rocket - Wikipedia

    en.wikipedia.org/wiki/Rocket

    The total impulse of a multi-stage rocket is the sum of the impulses of the individual stages. ... The Tsiolkovsky rocket equation gives a relationship between the ...

  6. Characteristic velocity - Wikipedia

    en.wikipedia.org/wiki/Characteristic_velocity

    Characteristic velocity or , or C-star is a measure of the combustion performance of a rocket engine independent of nozzle performance, and is used to compare different propellants and propulsion systems. c* should not be confused with c, which is the effective exhaust velocity related to the specific impulse by: =. Specific impulse and ...

  7. Relativistic rocket equation - Wikipedia

    en.wikipedia.org/wiki/Relativistic_rocket

    It is clear from the above calculations that a relativistic rocket would likely need to be antimatter-fired. [original research?] Other antimatter rockets in addition to the photon rocket that can provide a 0.6c specific impulse (studied for basic hydrogen-antihydrogen annihilation, no ionization, no recycling of the radiation [3]) needed for interstellar flight include the "beam core" pion ...

  8. Delta-v - Wikipedia

    en.wikipedia.org/wiki/Delta-v

    The rocket equation shows that the required amount of propellant increases exponentially with increasing delta-v. Therefore, in modern spacecraft propulsion systems considerable study is put into reducing the total delta-v needed for a given spaceflight, as well as designing spacecraft that are capable of producing larger delta-v.

  9. Jet propulsion - Wikipedia

    en.wikipedia.org/wiki/Jet_propulsion

    Specific impulse (usually abbreviated I sp) is a measure of how effectively a rocket uses propellant or jet engine uses fuel. By definition, it is the total impulse (or change in momentum) delivered per unit of propellant consumed [4] and is dimensionally equivalent to the generated thrust divided by the propellant mass flow rate or weight flow rate. [5]