Search results
Results from the WOW.Com Content Network
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
The specific impulse of a rocket can be defined in terms of thrust per unit mass flow of propellant. This is an equally valid (and in some ways somewhat simpler) way of defining the effectiveness of a rocket propellant. For a rocket, the specific impulse defined in this way is simply the effective exhaust velocity relative to the rocket, v e ...
The rocket equation shows that the required amount of propellant dramatically increases with increasing delta-v. Therefore, in modern spacecraft propulsion systems considerable study is put into reducing the total delta-v needed for a given spaceflight, as well as designing spacecraft that are capable of producing larger delta-v.
The specific impulse relates the delta-v capacity to the quantity of propellant consumed according to the Tsiolkovsky rocket equation: [5] = where: m 0 {\displaystyle m_{0}} is the initial total mass, including propellant, in kg (or lb)
This relationship is described by the rocket equation. Exhaust velocity is dependent on the propellant and engine used and closely related to specific impulse, the total energy delivered to the rocket vehicle per unit of propellant mass consumed. Mass ratio can also be affected by the choice of a given propellant.
Rocket mass ratios versus final velocity calculated from the rocket equation. The Tsiolkovsky rocket equation, or ideal rocket equation, can be useful for analysis of maneuvers by vehicles using rocket propulsion. [2] A rocket applies acceleration to itself (a thrust) by expelling part of its mass at high speed. The rocket itself moves due to ...
The total impulse of a multi-stage rocket is the sum of the impulses of the individual stages. ... The Tsiolkovsky rocket equation gives a relationship between the ...
It is clear from the above calculations that a relativistic rocket would likely need to be antimatter-fired. [original research?] Other antimatter rockets in addition to the photon rocket that can provide a 0.6c specific impulse (studied for basic hydrogen-antihydrogen annihilation, no ionization, no recycling of the radiation [3]) needed for interstellar flight include the "beam core" pion ...