Search results
Results from the WOW.Com Content Network
Mass transfer is the net movement of mass from one location (usually meaning stream, phase, fraction, or component) to another. Mass transfer occurs in many processes, such as absorption, evaporation, drying, precipitation, membrane filtration, and distillation. Mass transfer is used by different scientific disciplines for different processes ...
Mass transfer in a system is governed by Fick's first law: 'Diffusion flux from higher concentration to lower concentration is proportional to the gradient of the concentration of the substance and the diffusivity of the substance in the medium.' Mass transfer can take place due to different driving forces. Some of them are: [12]
Mass transfer coefficients can be estimated from many different theoretical equations, correlations, and analogies that are functions of material properties, intensive properties and flow regime (laminar or turbulent flow). Selection of the most applicable model is dependent on the materials and the system, or environment, being studied.
The compound is the prototypical antiaromatic hydrocarbon with 4 pi electrons (or π electrons). It is the smallest [n]-annulene ([4]-annulene).Its rectangular structure is the result of a pseudo [3] - (or second order) Jahn–Teller effect, which distorts the molecule and lowers its symmetry, converting the triplet to a singlet ground state. [4]
Aromaticity can be induced in compounds having a [10]annulene-type core if planarity is forcibly imposed by other substituents. Two methods to do so are known. One method is to formally replace two hydrogen atoms by a methylene bridge ( −CH 2 − ); this gives the planar bicyclic 1,6-methano[10]annulene ( 5 ).
The physical condition of a thermodynamic system at a given time is described by its state, which can be specified by the values of a set of thermodynamic state variables. A thermodynamic system is in thermodynamic equilibrium when there are no macroscopically apparent flows of matter or energy within it or between it and other systems.
It is one form of mass transfer. [1] Dispersive mass flux is analogous to diffusion, and it can also be described using Fick's first law: =, where c is mass concentration of the species being dispersed, E is the dispersion coefficient, and x is the position in the direction of the concentration gradient.
Natural bond orbital (NBO) analysis of C 4 H 4 BH has been performed in order to understand the bonding of borole in the familiar Lewis picture. [5] According to the computational results, the occupancy of the two C−C π orbitals is about 1.9, with a tiny amount of electronic charge (an occupancy of 0.13) delocalised on the out-of-plane boron p orbital, illustrated below.