Search results
Results from the WOW.Com Content Network
Due to the nature of hash functions, hash collisions may result in false positives, but the likelihood of collisions is usually negligible with random corruption. (The number of possible checksums is limited though large, so that with any checksum scheme many files will have the same checksum.
Several utilities, such as md5deep, can use such checksum files to automatically verify an entire directory of files in one operation. The particular hash algorithm used is often indicated by the file extension of the checksum file. The ".sha1" file extension indicates a checksum file containing 160-bit SHA-1 hashes in sha1sum format.
sha3sum is a similarly named program that calculates SHA-3, HAKE, RawSHAKE, and Keccak functions. [8] The <hash>sum naming convention is also used by the BLAKE team with b2sum and b3sum, by the program tthsum, and many others. On FreeBSD and OpenBSD, the utilities are called md5, sha1, sha256, and sha512. These versions offer slightly different ...
This is especially true of cryptographic hash functions, which may be used to detect many data corruption errors and verify overall data integrity; if the computed checksum for the current data input matches the stored value of a previously computed checksum, there is a very high probability the data has not been accidentally altered or corrupted.
SHA-2 basically consists of two hash algorithms: SHA-256 and SHA-512. SHA-224 is a variant of SHA-256 with different starting values and truncated output. SHA-384 and the lesser-known SHA-512/224 and SHA-512/256 are all variants of SHA-512. SHA-512 is more secure than SHA-256 and is commonly faster than SHA-256 on 64-bit machines such as AMD64.
The MD5 hash functions as a compact digital fingerprint of a file. As with all such hashing algorithms, there is theoretically an unlimited number of files that will have any given MD5 hash. However, it is very unlikely that any two non-identical files in the real world will have the same MD5 hash, unless they have been specifically created to ...
hash MD4: 128 bits hash MD5: 128 bits Merkle–Damgård construction: MD6: up to 512 bits Merkle tree NLFSR (it is also a keyed hash function) RadioGatún: arbitrary ideal mangling function RIPEMD: 128 bits hash RIPEMD-128: 128 bits hash RIPEMD-160: 160 bits hash RIPEMD-256: 256 bits hash RIPEMD-320: 320 bits hash SHA-1: 160 bits Merkle ...
SHA-2: A family of two similar hash functions, with different block sizes, known as SHA-256 and SHA-512. They differ in the word size; SHA-256 uses 32-bit words where SHA-512 uses 64-bit words. There are also truncated versions of each standard, known as SHA-224, SHA-384, SHA-512/224 and SHA-512/256. These were also designed by the NSA.