enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Moody chart - Wikipedia

    en.wikipedia.org/wiki/Moody_chart

    In engineering, the Moody chart or Moody diagram (also Stanton diagram) is a graph in non-dimensional form that relates the Darcy–Weisbach friction factor f D, Reynolds number Re, and surface roughness for fully developed flow in a circular pipe. It can be used to predict pressure drop or flow rate down such a pipe.

  3. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    The Reynolds number Re is taken to be Re = V D / ν, where V is the mean velocity of fluid flow, D is the pipe diameter, and where ν is the kinematic viscosity μ / ρ, with μ the fluid's Dynamic viscosity, and ρ the fluid's density. The pipe's relative roughness ε / D, where ε is the pipe's effective roughness height and D the pipe ...

  4. Hazen–Williams equation - Wikipedia

    en.wikipedia.org/wiki/Hazen–Williams_equation

    S foot of water per foot of pipe; P d = pressure drop over the length of pipe in psig (pounds per square inch gauge pressure) L = length of pipe in feet; Q = flow, gpm (gallons per minute) C = pipe roughness coefficient; d = inside pipe diameter, in (inches) Note: Caution with U S Customary Units is advised. The equation for head loss in pipes ...

  5. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    where the roughness height ε is scaled to the pipe diameter D. Figure 3. Roughness function B vs. friction Reynolds number R ∗. The data fall on a single trajectory when plotted in this way. The regime R ∗ < 1 is effectively that of smooth pipe flow. For large R ∗, the roughness function B approaches a constant value.

  6. Fanning friction factor - Wikipedia

    en.wikipedia.org/wiki/Fanning_friction_factor

    From the chart, it is evident that the friction factor is never zero, even for smooth pipes because of some roughness at the microscopic level. The friction factor for laminar flow of Newtonian fluids in round tubes is often taken to be: [4] = [5] [2] where Re is the Reynolds number of the flow.

  7. Hardy Cross method - Wikipedia

    en.wikipedia.org/wiki/Hardy_Cross_method

    The Hardy Cross method can be used to calculate the flow distribution in a pipe network. Consider the example of a simple pipe flow network shown at the right. For this example, the in and out flows will be 10 liters per second. We will consider n to be 2, and the head loss per unit flow r, and initial flow guess for each pipe as follows:

  8. Manning formula - Wikipedia

    en.wikipedia.org/wiki/Manning_formula

    Note: the Strickler coefficient is the reciprocal of Manning coefficient: Ks =1/ n, having dimension of L 1/3 /T and units of m 1/3 /s; it varies from 20 m 1/3 /s (rough stone and rough surface) to 80 m 1/3 /s (smooth concrete and cast iron). The discharge formula, Q = A V, can be used to rewrite Gauckler–Manning's equation by substitution for V.

  9. Reynolds number - Wikipedia

    en.wikipedia.org/wiki/Reynolds_number

    The Moody diagram, which describes the Darcy–Weisbach friction factor f as a function of the Reynolds number and relative pipe roughness. Pressure drops [ 28 ] seen for fully developed flow of fluids through pipes can be predicted using the Moody diagram which plots the Darcy–Weisbach friction factor f against Reynolds number Re and ...