Search results
Results from the WOW.Com Content Network
A series circuit with a voltage source (such as a battery, or in this case a cell) and three resistance units. Two-terminal components and electrical networks can be connected in series or parallel. The resulting electrical network will have two terminals, and itself can participate in a series or parallel topology.
The properties of the parallel RLC circuit can be obtained from the duality relationship of electrical circuits and considering that the parallel RLC is the dual impedance of a series RLC. Considering this, it becomes clear that the differential equations describing this circuit are identical to the general form of those describing a series RLC.
That means an ideal voltage source is replaced with a short circuit, and an ideal current source is replaced with an open circuit. Resistance can then be calculated across the terminals using the formulae for series and parallel circuits. This method is valid only for circuits with independent sources.
Simulation-based methods for time-based network analysis solve a circuit that is posed as an initial value problem (IVP). That is, the values of the components with memories (for example, the voltages on capacitors and currents through inductors) are given at an initial point of time t 0 , and the analysis is done for the time t 0 ≤ t ≤ t f ...
A resistor–inductor circuit (RL circuit), or RL filter or RL network, is an electric circuit composed of resistors and inductors driven by a voltage or current source. [1] A first-order RL circuit is composed of one resistor and one inductor, either in series driven by a voltage source or in parallel driven by a current source.
Performing a source transformation consists of using Ohm's law to take an existing voltage source in series with a resistance, and replacing it with a current source in parallel with the same resistance, or vice versa. The transformed sources are considered identical and can be substituted for one another in a circuit. [2]
In electrical engineering, Millman's theorem [1] (or the parallel generator theorem) is a method to simplify the solution of a circuit. Specifically, Millman's theorem is used to compute the voltage at the ends of a circuit made up of only branches in parallel. It is named after Jacob Millman, who proved the theorem.
This circuit transformation theory was published by Arthur Edwin Kennelly in 1899. [1] It is widely used in analysis of three-phase electric power circuits. The Y-Δ transform can be considered a special case of the star-mesh transform for three resistors. In mathematics, the Y-Δ transform plays an important role in theory of circular planar ...