Search results
Results from the WOW.Com Content Network
The carrying capacity of an environment is the maximum population size of a biological species that can be sustained by that specific environment, given the food, habitat, water, and other resources available.
These terms, r, and K, are derived from standard ecological algebra, as illustrated in the simple Verhulst equation of population dynamics: [30] = where r is the growth rate of the population (N), and K is the carrying capacity of its
This model can be generalized to any number of species competing against each other. One can think of the populations and growth rates as vectors, α 's as a matrix.Then the equation for any species i becomes = (=) or, if the carrying capacity is pulled into the interaction matrix (this doesn't actually change the equations, only how the interaction matrix is defined), = (=) where N is the ...
Source–sink dynamics is a theoretical model used by ecologists to describe how variation in habitat quality may affect the population growth or decline of organisms.. Since quality is likely to vary among patches of habitat, it is important to consider how a low quality patch might affect a population.
In a population, carrying capacity is known as the maximum population size of the species that the environment can sustain, which is determined by resources available. In many classic population models, r is represented as the intrinsic growth rate, where K is the carrying capacity, and N0 is the initial population size. [5]
If "I" exceeds the carrying capacity, then the system is said to be in overshoot, which may only be a temporary state. Overshoot may degrade the ability of the environment to endure impact, therefore reducing the carrying capacity. Impact may be measured using ecological footprint analysis in units of global hectares (gha). Ecological footprint ...
The two species share the same ecological niche, and are thus in competition with each other. Interspecific competition, in ecology, is a form of competition in which individuals of different species compete for the same resources in an ecosystem (e.g. food or living space). This can be contrasted with mutualism, a type of symbiosis.
The touristic ecological footprint (TEF) is the ecological footprint of visitors to a particular destination, and depends on the tourists' behavior. [24] Comparisons of TEFs can indicate the benefits of alternative destinations, modes of travel, food choices, types of lodging, and activities.