enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exergy - Wikipedia

    en.wikipedia.org/wiki/Exergy

    Entropy production is due to things such as friction, heat transfer across a finite temperature difference and mixing. In distinction from "exergy destruction", "exergy loss" is the transfer of exergy across the boundaries of a system, such as with mass or heat loss, where the exergy flow or transfer is potentially recoverable.

  3. Gouy–Stodola theorem - Wikipedia

    en.wikipedia.org/wiki/Gouy–Stodola_theorem

    The second law of thermodynamics states, in essence, that the entropy of a system only increases. Over time, thermodynamic systems tend to gain entropy and lose energy (in approaching equilibrium): thus, the entropy is "somehow" related to how much exergy or potential for useful work a system has. The Gouy-Stodola theorem provides a concrete link.

  4. Entropy of mixing - Wikipedia

    en.wikipedia.org/wiki/Entropy_of_mixing

    In thermodynamics, the entropy of mixing is the increase in the total entropy when several initially separate systems of different composition, each in a thermodynamic state of internal equilibrium, are mixed without chemical reaction by the thermodynamic operation of removal of impermeable partition(s) between them, followed by a time for establishment of a new thermodynamic state of internal ...

  5. Table of thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Table_of_thermodynamic...

    Entropy [ edit ] S = k B ln ⁡ Ω {\displaystyle S=k_{\mathrm {B} }\ln \Omega } , where k B is the Boltzmann constant , and Ω denotes the volume of macrostate in the phase space or otherwise called thermodynamic probability.

  6. Entropy (classical thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(classical...

    Figure 1. A thermodynamic model system. Differences in pressure, density, and temperature of a thermodynamic system tend to equalize over time. For example, in a room containing a glass of melting ice, the difference in temperature between the warm room and the cold glass of ice and water is equalized by energy flowing as heat from the room to the cooler ice and water mixture.

  7. Thermodynamic free energy - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_free_energy

    Free energy is subject to irreversible loss in the course of such work. [1] Since first-law energy is always conserved, it is evident that free energy is an expendable, second-law kind of energy. Several free energy functions may be formulated based on system criteria. Free energy functions are Legendre transforms of the internal energy.

  8. Isentropic process - Wikipedia

    en.wikipedia.org/wiki/Isentropic_process

    In contrast, if the process is irreversible, entropy is produced within the system; consequently, in order to maintain constant entropy within the system, energy must be simultaneously removed from the system as heat. For reversible processes, an isentropic transformation is carried out by thermally "insulating" the system from its surroundings.

  9. Second law of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Second_law_of_thermodynamics

    The energy and entropy of unpolarized blackbody thermal radiation, is calculated using the spectral energy and entropy radiance expressions derived by Max Planck [63] using equilibrium statistical mechanics, = ⁡ (), = ((+) ⁡ (+) ⁡ ()) where c is the speed of light, k is the Boltzmann constant, h is the Planck constant, ν is frequency ...