Search results
Results from the WOW.Com Content Network
A lathe faceplate is a basic workholding accessory for a wood or metal turning lathe. It is a circular metal (usually cast iron) plate which fixes to the end of the lathe spindle. The workpiece is then clamped to the faceplate, typically using t-slot nuts in slots in the faceplate, or less commonly threaded holes in the faceplate itself.
Rotary tables are made with a solid base, which has provision for clamping onto another table or fixture. The actual table is a precision-machined disc to which the work piece is clamped (T slots are generally provided for this purpose). This disc can rotate freely, for indexing, or under the control of a worm (handwheel), with the worm wheel ...
A common type of fixture, used in materials tensile testing (Grip-Engineering). A fixture is a work-holding or support device used in the manufacturing industry. [1] [2] Fixtures are used to securely locate (position in a specific location or orientation) and support the work, ensuring that all parts produced using the fixture will maintain conformity and interchangeability.
The components of a surface grinding machine are an abrasive wheel, a workholding device known as a chuck, and a reciprocating or rotary table. The chuck holds the material in place by two processes: ferromagnetic pieces are held in place by a magnetic chuck, while non-ferromagnetic and nonmetallic pieces are held in place with vacuum or ...
An angle plate is a work holding device used as a fixture in metalworking. Angle plates are used to hold workpieces square to the table during marking out operations. Adjustable angle plates are also available for workpieces that need to be inclined, usually towards a milling cutter .
In addition, CNC routers may have accessories such as vacuum pumps, with grid table tops or t-slot hold down fixtures to hold the parts in place for cutting. CNC routers are typically available in 3-axis and 5-axis CNC formats. Many manufacturers offer A and B axis for full 5-axis capabilities and rotary 4th axis.
CAM software automates the process of converting 3D models into tool paths, the route the multiaxis machine takes to mill a part (Fig. 1). This software takes into account the different parameters of the tool head (in the case of a CNC router, this would be the bit size), dimensions of the blank, and any constraints the machine may have.
A typical example involves an XY table that positions each hole center, where the spindle (Z-axis) then completes a fixed cycle for drilling by plunging and retracting axially. The code for 2.5D machining is significantly less complex than 3D contour machining, and the software and hardware requirements are (traditionally) less expensive.