Search results
Results from the WOW.Com Content Network
In astronomy or planetary science, the frost line, also known as the snow line or ice line, is the minimum distance from the central protostar of a solar nebula where the temperature is low enough for volatile compounds such as water, ammonia, methane, carbon dioxide and carbon monoxide to condense into solid grains, which will allow their accretion into planetesimals.
Because the frost line accumulated large amounts of water via evaporation from infalling icy material, it created a region of lower pressure that increased the speed of orbiting dust particles and halted their motion toward the Sun. In effect, the frost line acted as a barrier that caused the material to accumulate rapidly at ~5 AU from the Sun.
In geology, the frost line is the level down to which the soil will normally freeze each winter. By an analogy, the term is introduced in other areas. Frost line (astrophysics), a particular distance in the solar nebula from the central protosun where it is cool enough for hydrogen compounds such as water, ammonia, and methane to condense into solid ice grains.
An artist's illustration giving a simple overview of the main regions of a protoplanetary disk, delineated by the soot and frost line, which for example has been observed around the star V883 Orionis. [15] The nebular hypothesis of solar system formation describes how protoplanetary disks are thought to evolve into planetary systems.
It is sometimes called freeze line, [3] while other disstinguish the concepts of frost/freeze line. [2] The distance from the die is called the height of the frost line. It depends on various factors, including the melt temperature, the speed of cooling, the extrusion speed, and the diameter of the bubble.
The slope of the line therefore represents the standard potential between two oxidation states. In other words, the steepness of the line shows the tendency for those two reactants to react and to form the lowest-energy product. [1] There is a possibility of having either a positive or a negative slope.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Figure 1. The light path through a Michelson interferometer.The two light rays with a common source combine at the half-silvered mirror to reach the detector. They may either interfere constructively (strengthening in intensity) if their light waves arrive in phase, or interfere destructively (weakening in intensity) if they arrive out of phase, depending on the exact distances between the ...