Search results
Results from the WOW.Com Content Network
A bounded lattice is a lattice. (def) 13. A heyting algebra is residuated. 14. A residuated lattice is a lattice. (def) 15. A distributive lattice is modular. [3] 16. A modular complemented lattice is relatively complemented. [4] 17. A boolean algebra is relatively complemented. (1,15,16) 18. A relatively complemented lattice is a lattice. (def ...
A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).
An example is the Knaster–Tarski theorem, which states that the set of fixed points of a monotone function on a complete lattice is again a complete lattice. This is easily seen to be a generalization of the above observation about the images of increasing and idempotent functions.
Physical lattice models frequently occur as an approximation to a continuum theory, either to give an ultraviolet cutoff to the theory to prevent divergences or to perform numerical computations. An example of a continuum theory that is widely studied by lattice models is the QCD lattice model, a discretization of quantum chromodynamics.
Various different characterizations exist. For example, the following is an equivalent law that avoids the use of choice functions [citation needed].For any set S of sets, we define the set S # to be the set of all subsets X of the complete lattice that have non-empty intersection with all members of S.
For example, an element of a distributive lattice is meet-prime if and only if it is meet-irreducible, though the latter is in general a weaker property. By duality, the same is true for join-prime and join-irreducible elements. [7] If a lattice is distributive, its covering relation forms a median graph. [8]
For example, the subspaces of a vector space (and more generally the submodules of a module over a ring) form a modular lattice. In a not necessarily modular lattice, there may still be elements b for which the modular law holds in connection with arbitrary elements x and a (for a ≤ b). Such an element is called a right modular element.
Examples in all admissible signatures are given by the II m,n and I m,n constructions, respectively. The theta function of a unimodular positive definite lattice is a modular form whose weight is one half the rank. If the lattice is even, the form has level 1, and if the lattice is odd the form has Γ 0 (4