Search results
Results from the WOW.Com Content Network
A real dynamical system, real-time dynamical system, continuous time dynamical system, or flow is a tuple (T, M, Φ) with T an open interval in the real numbers R, M a manifold locally diffeomorphic to a Banach space, and Φ a continuous function. If Φ is continuously differentiable we say the system is a differentiable dynamical system.
Dynamical systems theory is an area of mathematics used to describe the behavior of complex dynamical systems, usually by employing differential equations or difference equations. When differential equations are employed, the theory is called continuous dynamical systems .
Dynamical systems deals with the study of the solutions to the equations of motion of systems that are primarily mechanical in nature; although this includes both planetary orbits as well as the behaviour of electronic circuits and the solutions to partial differential equations that arise in biology.
Linear dynamical systems can be solved exactly, in contrast to most nonlinear ones. Occasionally, a nonlinear system can be solved exactly by a change of variables to a linear system. Moreover, the solutions of (almost) any nonlinear system can be well-approximated by an equivalent linear system near its fixed points. Hence, understanding ...
Conley's decomposition is characterized by a function known as complete Lyapunov function. Unlike traditional Lyapunov functions that are used to assert the stability of an equilibrium point (or a fixed point) and can be defined only on the basin of attraction of the corresponding attractor, complete Lyapunov functions must be defined on the whole phase-portrait.
The ergodic theory of dynamical systems has recently been used to prove combinatorial theorems about number theory which has given rise to the field of arithmetic combinatorics. Also dynamical systems theory is heavily involved in the relatively recent field of combinatorics on words. Also combinatorial aspects of dynamical systems are studied.
In applied mathematics and astrodynamics, in the theory of dynamical systems, a crisis is the sudden appearance or disappearance of a strange attractor as the parameters of a dynamical system are varied. [1] [2] This global bifurcation occurs when a chaotic attractor comes into contact with an unstable periodic orbit or its stable manifold. [3]
This is a list of dynamical system and differential equation topics, by Wikipedia page. See also list of partial differential equation topics, list of equations.