enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    Continuity and differentiability This function does not have a derivative at the marked point, as the function is not continuous there (specifically, it has a jump discontinuity ). The absolute value function is continuous but fails to be differentiable at x = 0 since the tangent slopes do not approach the same value from the left as they do ...

  3. Differentiable function - Wikipedia

    en.wikipedia.org/wiki/Differentiable_function

    In complex analysis, complex-differentiability is defined using the same definition as single-variable real functions. This is allowed by the possibility of dividing complex numbers . So, a function f : C → C {\textstyle f:\mathbb {C} \to \mathbb {C} } is said to be differentiable at x = a {\textstyle x=a} when

  4. Real analysis - Wikipedia

    en.wikipedia.org/wiki/Real_analysis

    Differentiability is therefore a stronger regularity condition (condition describing the "smoothness" of a function) than continuity, and it is possible for a function to be continuous on the entire real line but not differentiable anywhere (see Weierstrass's nowhere differentiable continuous function). It is possible to discuss the existence ...

  5. Function of several real variables - Wikipedia

    en.wikipedia.org/wiki/Function_of_several_real...

    The implicit function theorem of more than two real variables deals with the continuity and differentiability of the function, as follows. [4] Let ϕ ( x 1 , x 2 , …, x n ) be a continuous function with continuous first order partial derivatives, and let ϕ evaluated at a point ( a , b ) = ( a 1 , a 2 , …, a n , b ) be zero:

  6. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    The concept of continuity for functions between metric spaces can be strengthened in various ways by limiting the way depends on and c in the definition above. Intuitively, a function f as above is uniformly continuous if the δ {\displaystyle \delta } does not depend on the point c .

  7. Absolute continuity - Wikipedia

    en.wikipedia.org/wiki/Absolute_continuity

    In calculus and real analysis, absolute continuity is a smoothness property of functions that is stronger than continuity and uniform continuity. The notion of absolute continuity allows one to obtain generalizations of the relationship between the two central operations of calculus — differentiation and integration .

  8. Uniform convergence - Wikipedia

    en.wikipedia.org/wiki/Uniform_convergence

    The concept, which was first formalized by Karl Weierstrass, is important because several properties of the functions , such as continuity, Riemann integrability, and, with additional hypotheses, differentiability, are transferred to the limit if the convergence is uniform, but not necessarily if the convergence is not uniform.

  9. Smoothness - Wikipedia

    en.wikipedia.org/wiki/Smoothness

    A bump function is a smooth function with compact support.. In mathematical analysis, the smoothness of a function is a property measured by the number of continuous derivatives (differentiability class) it has over its domain.