enow.com Web Search

  1. Ad

    related to: repeating decimal into fraction
  2. education.com has been visited by 100K+ users in the past month

    It’s an amazing resource for teachers & homeschoolers - Teaching Mama

    • Education.com Blog

      See what's new on Education.com,

      explore classroom ideas, & more.

    • Lesson Plans

      Engage your students with our

      detailed lesson plans for K-8.

Search results

  1. Results from the WOW.Com Content Network
  2. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.

  3. Midy's theorem - Wikipedia

    en.wikipedia.org/wiki/Midy's_theorem

    In mathematics, Midy's theorem, named after French mathematician E. Midy, [1] is a statement about the decimal expansion of fractions a/p where p is a prime and a/p has a repeating decimal expansion with an even period (sequence A028416 in the OEIS). If the period of the decimal representation of a/p is 2n, so that

  4. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    Sometimes an infinite repeating decimal is required to reach the same precision. Thus, it is often useful to convert repeating decimals into fractions. A conventional way to indicate a repeating decimal is to place a bar (known as a vinculum) over the digits that repeat, for example 0. 789 = 0.789789789... For repeating patterns that begin ...

  5. 0.999... - Wikipedia

    en.wikipedia.org/wiki/0.999...

    In 1802, H. Goodwyn published an observation on the appearance of 9s in the repeating-decimal representations of fractions whose denominators are certain prime numbers. [46] Examples include: = 0. 142857 and 142 + 857 = 999. = 0. 01369863 and 0136 + 9863 = 9999.

  6. Decimal representation - Wikipedia

    en.wikipedia.org/wiki/Decimal_representation

    Every decimal representation of a rational number can be converted to a fraction by converting it into a sum of the integer, non-repeating, and repeating parts and then converting that sum to a single fraction with a common denominator.

  7. Vinculum (symbol) - Wikipedia

    en.wikipedia.org/wiki/Vinculum_(symbol)

    A vinculum can indicate a line segment where A and B are the endpoints: ¯. A vinculum can indicate the repetend of a repeating decimal value: . 1 ⁄ 7 = 0. 142857 = 0.1428571428571428571...

  8. Decimal - Wikipedia

    en.wikipedia.org/wiki/Decimal

    If the rational number is not a decimal fraction, the division may continue indefinitely. However, as all successive remainders are less than the divisor, there are only a finite number of possible remainders, and after some place, the same sequence of digits must be repeated indefinitely in the quotient. That is, one has a repeating decimal ...

  9. Transposable integer - Wikipedia

    en.wikipedia.org/wiki/Transposable_integer

    For any integer coprime to 10, its reciprocal is a repeating decimal without any non-recurring digits. E.g. 1 ⁄ 143 = 0. 006993 006993 006993.... While the expression of a single series with vinculum on top is adequate, the intention of the above expression is to show that the six cyclic permutations of 006993 can be obtained from this repeating decimal if we select six consecutive digits ...

  1. Ad

    related to: repeating decimal into fraction