Search results
Results from the WOW.Com Content Network
Axial flow compressors produce a continuous flow of compressed gas, and have the benefits of high efficiency and large mass flow rate, particularly in relation to their size and cross-section. They do, however, require several rows of airfoils to achieve a large pressure rise, making them complex and expensive relative to other designs (e.g ...
There are three basic categories of gas turbine engine compressor: axial compressor, centrifugal compressor and mixed flow compressor. A fourth, unusual, type is the free-piston gas generator, which combines the functions of compressor and combustion chamber in one unit.
Stalling is the separation of flow from the compressor blade surface as shown in the Figure 6. At low flow rates the angle of attack increases over the critical or maximum angle that the aerodynamic profile can sustain, and due to this there occurs the flow separation on the suction side of the blades which is known as positive stalling. If the ...
Axial compressors are almost always multi-staged, with the cross-sectional area of the gas passage diminishing along the compressor to maintain an optimum axial Mach number. Beyond about 5 stages or a 4:1 design pressure ratio a compressor will not function unless fitted with features such as stationary vanes with variable angles (known as ...
The x-axis is usually some function of compressor entry mass flow, usually corrected flow or non-dimensional flow, as opposed to real flow. This axis can be considered a rough measure of the axial Mach number of the flow through the device.
There is also a third category, called mixed flow machines, where both radial and axial flow velocity components are present. [ 2 ] Turbomachines may be further classified into two additional categories: those that absorb energy to increase the fluid pressure , i.e. pumps , fans , and compressors , and those that produce energy such as turbines ...
Schematic diagram of a turboexpander driving a compressor. A turboexpander, also referred to as a turbo-expander or an expansion turbine, is a centrifugal or axial-flow turbine, through which a high-pressure gas is expanded to produce work that is often used to drive a compressor or generator. [1] [2] [3]
The engine's design is unusual; the core flow path is reversed twice. Aft of the fan, the axial compressor has five stages, after which the gas path progresses to the aft end of the engine. There, it is reversed to flow through a centrifugal compressor stage, the combustors and then the turbine stages.