Search results
Results from the WOW.Com Content Network
In the central nervous system (CNS), glia suppress repair. Glial cells known as astrocytes enlarge and proliferate to form a scar and produce inhibitory molecules that inhibit regrowth of a damaged or severed axon. In the peripheral nervous system (PNS), glial cells known as Schwann cells (or also as neuri-lemmocytes) promote repair. After ...
Neuroregeneration is the regrowth or repair of nervous tissues, cells or cell products. Neuroregenerative mechanisms may include generation of new neurons , glia , axons , myelin , or synapses . Neuroregeneration differs between the peripheral nervous system (PNS) and the central nervous system (CNS) by the functional mechanisms involved ...
Endogenous regeneration in the brain is the ability of cells to engage in the repair and regeneration process. While the brain has a limited capacity for regeneration, endogenous neural stem cells, as well as numerous pro-regenerative molecules, can participate in replacing and repairing damaged or diseased neurons and glial cells.
When the glial cells were injected into the injury of the adult rat's spinal cord, astrocytes were generated by exposing human glial precursor cells to bone morphogenetic protein (bone morphogenetic protein is important because it is considered to create tissue architecture throughout the body).
1. Ketogenic Diet. Cancer cells rely on glucose for energy to grow. The ketogenic diet is a way to provide an alternative energy source to normal cells in the dog's body while starving the cancer ...
Brain healing is the process that occurs after the brain has been damaged. If an individual survives brain damage, the brain has a remarkable ability to adapt. When cells in the brain are damaged and die, for instance by stroke, there will be no repair or scar formation for those cells.
Gliogenesis results in the formation of non-neuronal glia populations from neuronal cells. In this capacity, glial cells provide multiple functions to both the central nervous system (CNS) and the peripheral nervous system (PNS). Subsequent differentiation of glial cell populations results in function-specialized glial lineages.
Reactive astrogliosis is a spectrum of changes in astrocytes that occur in response to all forms of CNS injury and disease. Changes due to reactive astrogliosis vary with the severity of the CNS insult along a graduated continuum of progressive alterations in molecular expression, progressive cellular hypertrophy, proliferation and scar formation.