Search results
Results from the WOW.Com Content Network
A centripetal force (from Latin centrum, "center" and petere, "to seek" [1]) is a force that makes a body follow a curved path.The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path.
Unlike tangential acceleration, centripetal acceleration is present in both uniform and non-uniform circular motion. This diagram shows the normal force (n) pointing in other directions rather than opposite to the weight force. In non-uniform circular motion, the normal force does not always point to the opposite direction of weight.
The whole path is continuous, and its pieces are smooth. Now assume a point particle moves with constant speed along this path, so its tangential acceleration is zero. The centripetal acceleration given by v 2 / r is normal to the arc and inward.
Acceleration vector a, not parallel to the radial motion but offset by the angular and Coriolis accelerations, nor tangent to the path but offset by the centripetal and radial accelerations. Kinematic vectors in plane polar coordinates.
When two forces act on a point particle, the resulting force, the resultant (also called the net force), can be determined by following the parallelogram rule of vector addition: the addition of two vectors represented by sides of a parallelogram, gives an equivalent resultant vector that is equal in magnitude and direction to the transversal ...
The equation of motion for a particle of constant mass m is Newton's second law of 1687, in modern vector notation =, where a is its acceleration and F the resultant force acting on it. Where the mass is varying, the equation needs to be generalised to take the time derivative of the momentum.
Consequently, the acceleration is the second derivative of position, [7] often written . Position, when thought of as a displacement from an origin point, is a vector: a quantity with both magnitude and direction. [9]: 1 Velocity and acceleration are vector quantities as well. The mathematical tools of vector algebra provide the means to ...
The formula for the acceleration A P can now be obtained as: = ˙ + + (), or = / + / +, where α is the angular acceleration vector obtained from the derivative of the angular velocity vector; / =, is the relative position vector (the position of P relative to the origin O of the moving frame M); and = ¨ is the acceleration of the origin of ...