enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Water–gas shift reaction - Wikipedia

    en.wikipedia.org/wiki/Water–gas_shift_reaction

    The water–gas shift reaction (WGSR) describes the reaction of carbon monoxide and water vapor to form carbon dioxide and hydrogen: CO + H 2 O ⇌ CO 2 + H 2. The water gas shift reaction was discovered by Italian physicist Felice Fontana in 1780. It was not until much later that the industrial value of this reaction was realized.

  3. Industrial catalysts - Wikipedia

    en.wikipedia.org/wiki/Industrial_catalysts

    The first step in the WGS reaction is the high temperature shift which is carried out at temperatures between 320 °C and 450 °C. As mentioned before, the catalyst is a composition of iron-oxide, Fe 2 O 3 (90-95%), and chromium oxides Cr 2 O 3 (5-10%) which have an ideal activity and selectivity at these temperatures.

  4. Temperature jump - Wikipedia

    en.wikipedia.org/wiki/Temperature_Jump

    where R is the universal gas constant and T is the absolute temperature. When a single step in a reaction is perturbed in a temperature jump experiment, the reaction follows a single exponential decay function with time constant equal to a function of the forward (k a) and reverse (k b) rate constants.

  5. Thermodynamic versus kinetic reaction control - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_versus...

    The ideal temperature for a reaction under thermodynamic control is the lowest temperature at which equilibrium will be reached in a reasonable amount of time. [15] If needed, the selectivity can be increased by then slowly cooling the reaction mixture to shift the equilibrium further toward the most stable product.

  6. Sorption enhanced water gas shift - Wikipedia

    en.wikipedia.org/wiki/Sorption_enhanced_water...

    The water gas shift reaction is the reaction between carbon monoxide and steam to form hydrogen and carbon dioxide: CO + H 2 O ⇌ CO 2 + H 2. This reaction was discovered by Felice Fontana and nowadays is adopted in a wide range of industrial applications, such as in the production process of ammonia, hydrocarbons, methanol, hydrogen and other chemicals.

  7. Temperature–entropy diagram - Wikipedia

    en.wikipedia.org/wiki/Temperature–entropy_diagram

    In thermodynamics, a temperature–entropy (T–s) diagram is a thermodynamic diagram used to visualize changes to temperature (T ) and specific entropy (s) during a thermodynamic process or cycle as the graph of a curve. It is a useful and common tool, particularly because it helps to visualize the heat transfer during a process.

  8. Le Chatelier's principle - Wikipedia

    en.wikipedia.org/wiki/Le_Chatelier's_principle

    When heat is removed and the temperature decreases, the reaction shifts to the left and the flask turns colorless due to an increase in N 2 O 4: again, according to Le Chatelier's principle. The effect of changing the temperature in the equilibrium can be made clear by 1) incorporating heat as either a reactant or a product, and 2) assuming ...

  9. Energy profile (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Energy_profile_(chemistry)

    Figure 6:Reaction Coordinate Diagrams showing reactions with 0, 1 and 2 intermediates: The double-headed arrow shows the first, second and third step in each reaction coordinate diagram. In all three of these reactions the first step is the slow step because the activation energy from the reactants to the transition state is the highest.