Ads
related to: difference quotient problems worksheets printable 5th grade
Search results
Results from the WOW.Com Content Network
Difference quotients may also find relevance in applications involving Time discretization, where the width of the time step is used for the value of h. The difference quotient is sometimes also called the Newton quotient [10] [12] [13] [14] (after Isaac Newton) or Fermat's difference quotient (after Pierre de Fermat). [15]
It is a grade 1 derivation on the exterior algebra. In R 3, the gradient, curl, and divergence are special cases of the exterior derivative. An intuitive interpretation of the gradient is that it points "up": in other words, it points in the direction of fastest increase of the function.
This expression is Newton's difference quotient (also known as a first-order divided difference). The slope of this secant line differs from the slope of the tangent line by an amount that is approximately proportional to h. As h approaches zero, the slope of the secant line approaches the slope of the tangent line.
The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.
For arbitrary stencil points and any derivative of order < up to one less than the number of stencil points, the finite difference coefficients can be obtained by solving the linear equations [6] ( s 1 0 โฏ s N 0 โฎ โฑ โฎ s 1 N − 1 โฏ s N N − 1 ) ( a 1 โฎ a N ) = d !
The quotient / is not infinitely small; rather it is a real number. The use of infinitesimals in this form was widely criticized, for instance by the famous pamphlet The Analyst by Bishop Berkeley. Augustin-Louis Cauchy defined the differential without appeal to the atomism of Leibniz's infinitesimals.
Ads
related to: difference quotient problems worksheets printable 5th grade