Search results
Results from the WOW.Com Content Network
The vacuum magnetic permeability (variously vacuum permeability, permeability of free space, permeability of vacuum, magnetic constant) is the magnetic permeability in a classical vacuum. It is a physical constant , conventionally written as μ 0 (pronounced "mu nought" or "mu zero").
In SI units, permeability is measured in henries per meter (H/m), or equivalently in newtons per ampere squared (N/A 2). The permeability constant μ 0, also known as the magnetic constant or the permeability of free space, is the proportionality between magnetic induction and magnetizing force when forming a magnetic field in a classical vacuum.
As before, it is defined by the equation ε 0 = 1/(μ 0 c 2), and is thus determined by the value of μ 0, the magnetic vacuum permeability which in turn is determined by the experimentally determined dimensionless fine-structure constant α: = = ,
is the speed of light (i.e. phase velocity) in a medium with permeability μ, and permittivity ε, and ∇ 2 is the Laplace operator. In a vacuum, v ph = c 0 = 299 792 458 m/s, a fundamental physical constant. [1] The electromagnetic wave equation derives from Maxwell's equations.
Its presently accepted value is [1] Z 0 = 376.730 313 412 (59) Ω, where Ω is the ohm, the SI unit of electrical resistance. The impedance of free space (that is, the wave impedance of a plane wave in free space) is equal to the product of the vacuum permeability μ 0 and the speed of light in vacuum c 0.
where μ 0 is the vacuum permeability (see table of physical constants), and (1 + χ v) is the relative permeability of the material. Thus the volume magnetic susceptibility χ v and the magnetic permeability μ are related by the following formula: = (+).
The formula for capacitance in a parallel plate capacitor is written as C = ε A d {\displaystyle C=\varepsilon \ {\frac {A}{d}}} where A {\displaystyle A} is the area of one plate, d {\displaystyle d} is the distance between the plates, and ε {\displaystyle \varepsilon } is the permittivity of the medium between the two plates.
where is the vacuum permeability. Any magnetic field has an associated magnetic pressure contained by the boundary conditions on the field. It is identical to any other physical pressure except that it is carried by the magnetic field rather than (in the case of a gas) by the kinetic energy of gas molecules.