Search results
Results from the WOW.Com Content Network
The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.
A typical finite-dimensional mixture model is a hierarchical model consisting of the following components: . N random variables that are observed, each distributed according to a mixture of K components, with the components belonging to the same parametric family of distributions (e.g., all normal, all Zipfian, etc.) but with different parameters
Model-based clustering [1] based on a statistical model for the data, usually a mixture model. This has several advantages, including a principled statistical basis for clustering, and ways to choose the number of clusters, to choose the best clustering model, to assess the uncertainty of the clustering, and to identify outliers that do not ...
Gaussian mixture model. Add languages. Add links. Article; ... Print/export Download as PDF ... Appearance. move to sidebar hide. From Wikipedia, the free ...
Standard model-based clustering methods include more parsimonious models based on the eigenvalue decomposition of the covariance matrices, that provide a balance between overfitting and fidelity to the data. One prominent method is known as Gaussian mixture models (using the expectation-maximization algorithm).
Histograms for one-dimensional datapoints belonging to clusters detected by an infinite Gaussian mixture model. During the parameter estimation based on Gibbs sampling , new clusters are created and grow on the data. The legend shows the cluster colours and the number of datapoints assigned to each cluster.
Types of generative models are: Gaussian mixture model (and other types of mixture model) Hidden Markov model; Probabilistic context-free grammar; Bayesian network (e.g. Naive bayes, Autoregressive model) Averaged one-dependence estimators; Latent Dirichlet allocation; Boltzmann machine (e.g. Restricted Boltzmann machine, Deep belief network)
A mixed model, mixed-effects model or mixed error-component model is a statistical model containing both fixed effects and random effects. [ 1 ] [ 2 ] These models are useful in a wide variety of disciplines in the physical, biological and social sciences.