enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Harmonic series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Harmonic_series_(mathematics)

    The series = + = + + is known as the alternating harmonic series. It is conditionally convergent by the alternating series test , but not absolutely convergent . Its sum is the natural logarithm of 2 .

  3. Riemann series theorem - Wikipedia

    en.wikipedia.org/wiki/Riemann_series_theorem

    The alternating harmonic series is a classic example of a conditionally convergent series: = + is convergent, whereas = | + | = = is the ordinary harmonic series, which diverges. Although in standard presentation the alternating harmonic series converges to ln(2) , its terms can be arranged to converge to any number, or even to diverge.

  4. Conditional convergence - Wikipedia

    en.wikipedia.org/wiki/Conditional_convergence

    A classic example is the alternating harmonic series given by + + = = +, which converges to ⁡ (), but is not absolutely convergent (see Harmonic series). Bernhard Riemann proved that a conditionally convergent series may be rearranged to converge to any value at all, including ∞ or −∞; see Riemann series theorem .

  5. Convergence tests - Wikipedia

    en.wikipedia.org/wiki/Convergence_tests

    The case of =, = yields the harmonic series, which diverges. The case of =, = is the ... are convergent series. This test is also known as the Leibniz ...

  6. Divergence of the sum of the reciprocals of the primes

    en.wikipedia.org/wiki/Divergence_of_the_sum_of...

    by the divergence of the harmonic series. This shows that x k ≥ 1 {\displaystyle x_{k}\geq 1} for all k {\displaystyle k} , and since the tails of a convergent series must themselves converge to zero, this proves divergence.

  7. Absolute convergence - Wikipedia

    en.wikipedia.org/wiki/Absolute_convergence

    If a series is convergent but not absolutely convergent, it is called conditionally convergent. An example of a conditionally convergent series is the alternating harmonic series. Many standard tests for divergence and convergence, most notably including the ratio test and the root test, demonstrate absolute convergence.

  8. Convergent series - Wikipedia

    en.wikipedia.org/wiki/Convergent_series

    A series is convergent (or converges) if and only if the sequence ... The reciprocals of the positive integers produce a divergent series (harmonic series):

  9. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    = + = + +, which has a sum of the natural logarithm of 2, while the sum of the absolute values of the terms is the harmonic series, = = + + + + +, which diverges per the divergence of the harmonic series, [28] so the alternating harmonic series is conditionally convergent.