enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Data preprocessing - Wikipedia

    en.wikipedia.org/wiki/Data_Preprocessing

    Semantic data mining is a subset of data mining that specifically seeks to incorporate domain knowledge, such as formal semantics, into the data mining process.Domain knowledge is the knowledge of the environment the data was processed in. Domain knowledge can have a positive influence on many aspects of data mining, such as filtering out redundant or inconsistent data during the preprocessing ...

  3. Contrastive Language-Image Pre-training - Wikipedia

    en.wikipedia.org/wiki/Contrastive_Language-Image...

    Data preprocessing [ edit ] For the CLIP image models, the input images are preprocessed by first dividing each of the R, G, B values of an image by the maximum possible value, so that these values fall between 0 and 1, then subtracting by [0.48145466, 0.4578275, 0.40821073], and dividing by [0.26862954, 0.26130258, 0.27577711].

  4. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Data are ordered, timestamped, single-valued metrics. All data files contain anomalies, unless otherwise noted. None 50+ files CSV Anomaly detection: 2016 (continually updated) [328] Numenta Skoltech Anomaly Benchmark (SKAB) Each file represents a single experiment and contains a single anomaly.

  5. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    A common source for data is a data mart or data warehouse. Pre-processing is essential to analyze the multivariate data sets before data mining. The target set is then cleaned. Data cleaning removes the observations containing noise and those with missing data.

  6. Artificial intelligence engineering - Wikipedia

    en.wikipedia.org/wiki/Artificial_intelligence...

    Additionally, securing the data used to train AI models is of paramount importance. Encryption, secure data storage, and access control mechanisms are employed to safeguard sensitive information from unauthorized access and breaches. AI systems also require constant monitoring to detect and mitigate vulnerabilities that may arise post-deployment.

  7. Feature scaling - Wikipedia

    en.wikipedia.org/wiki/Feature_scaling

    Feature standardization makes the values of each feature in the data have zero-mean (when subtracting the mean in the numerator) and unit-variance. This method is widely used for normalization in many machine learning algorithms (e.g., support vector machines , logistic regression , and artificial neural networks ).

  8. Feature engineering - Wikipedia

    en.wikipedia.org/wiki/Feature_engineering

    Feature engineering in machine learning and statistical modeling involves selecting, creating, transforming, and extracting data features. Key components include feature creation from existing data, transforming and imputing missing or invalid features, reducing data dimensionality through methods like Principal Components Analysis (PCA), Independent Component Analysis (ICA), and Linear ...

  9. Instance selection - Wikipedia

    en.wikipedia.org/wiki/Instance_selection

    Instance selection (or dataset reduction, or dataset condensation) is an important data pre-processing step that can be applied in many machine learning (or data mining) tasks. [1] Approaches for instance selection can be applied for reducing the original dataset to a manageable volume, leading to a reduction of the computational resources that ...