enow.com Web Search

  1. Ads

    related to: euler characteristics formula example math worksheet 6th grade dividing fractions

Search results

  1. Results from the WOW.Com Content Network
  2. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent.

  3. Euler characteristic of an orbifold - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic_of_an...

    (The appearance of in the summation is the usual Euler characteristic.) [1] [2] If the action is free, the sum has only a single term, and so this expression reduces to the topological Euler characteristic of divided by | |. [2]

  4. Riemann–Hurwitz formula - Wikipedia

    en.wikipedia.org/wiki/Riemann–Hurwitz_formula

    Indeed, to obtain this formula, remove disjoint disc neighborhoods of the branch points from S and their preimages in S' so that the restriction of is a covering. Removing a disc from a surface lowers its Euler characteristic by 1 by the formula for connected sum, so we finish by the formula for a non-ramified covering.

  5. Euler class - Wikipedia

    en.wikipedia.org/wiki/Euler_class

    This can be seen intuitively in that the Euler class is a class whose degree depends on the dimension of the bundle (or manifold, if the tangent bundle): the Euler class is an element of () where is the dimension of the bundle, while the other classes have a fixed dimension (e.g., the first Stiefel-Whitney class is an element of ()).

  6. Euler's criterion - Wikipedia

    en.wikipedia.org/wiki/Euler's_criterion

    In number theory, Euler's criterion is a formula for determining whether an integer is a quadratic residue modulo a prime. Precisely, Precisely, Let p be an odd prime and a be an integer coprime to p .

  7. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    Thus, it is often called Euler's phi function or simply the phi function. In 1879, J. J. Sylvester coined the term totient for this function, [14] [15] so it is also referred to as Euler's totient function, the Euler totient, or Euler's totient. Jordan's totient is a generalization of Euler's. The cototient of n is defined as n − φ(n).

  1. Ads

    related to: euler characteristics formula example math worksheet 6th grade dividing fractions
  1. Related searches euler characteristics formula example math worksheet 6th grade dividing fractions

    euler characteristics formulaeuler's formula proof
    euler's characteristicseuler's polyhedron formula
    euler's formula