Ad
related to: fraction to repeating decimal converterIt’s an amazing resource for teachers & homeschoolers - Teaching Mama
- Guided Lessons
Learn new concepts step-by-step
with colorful guided lessons.
- 20,000+ Worksheets
Browse by grade or topic to find
the perfect printable worksheet.
- Lesson Plans
Engage your students with our
detailed lesson plans for K-8.
- Digital Games
Turn study time into an adventure
with fun challenges & characters.
- Guided Lessons
Search results
Results from the WOW.Com Content Network
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.
A conventional way to indicate a repeating decimal is to place a bar (known as a vinculum) over the digits that repeat, for example 0. 789 = 0.789789789... For repeating patterns that begin immediately after the decimal point, the result of the conversion is the fraction with the pattern as a numerator, and the same number of nines as a ...
Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".
In 1802, H. Goodwyn published an observation on the appearance of 9s in the repeating-decimal representations of fractions whose denominators are certain prime numbers. [46] Examples include: = 0. 142857 and 142 + 857 = 999. = 0. 01369863 and 0136 + 9863 = 9999.
However, most decimal fractions like 0.1 or 0.123 are infinite repeating fractions in base 2. and hence cannot be represented that way. Similarly, any decimal fraction a/10 m, such as 1/100 or 37/1000, can be exactly represented in fixed point with a power-of-ten scaling factor 1/10 n with any n ≥ m.
In mathematics, Midy's theorem, named after French mathematician E. Midy, [1] is a statement about the decimal expansion of fractions a/p where p is a prime and a/p has a repeating decimal expansion with an even period (sequence A028416 in the OEIS). If the period of the decimal representation of a/p is 2n, so that
If the rational number is not a decimal fraction, the division may continue indefinitely. However, as all successive remainders are less than the divisor, there are only a finite number of possible remainders, and after some place, the same sequence of digits must be repeated indefinitely in the quotient. That is, one has a repeating decimal ...
This is the repeating decimal notation (to which there does not exist a single universally accepted notation or phrasing). For base 10 it is called a repeating decimal or recurring decimal. An irrational number has an infinite non-repeating representation in all integer bases.
Ad
related to: fraction to repeating decimal converterIt’s an amazing resource for teachers & homeschoolers - Teaching Mama