Search results
Results from the WOW.Com Content Network
The more general Ramanujan–Petersson conjecture for holomorphic cusp forms in the theory of elliptic modular forms for congruence subgroups has a similar formulation, with exponent (k − 1)/2 where k is the weight of the form.
| τ(p) | ≤ 2p 11/2 for all primes p. The first two properties were proved by Mordell (1917) and the third one, called the Ramanujan conjecture, was proved by Deligne in 1974 as a consequence of his proof of the Weil conjectures (specifically, he deduced it by applying them to a Kuga-Sato variety).
In mathematics, Ramanujan's congruences are the congruences for the partition function p(n) discovered by Srinivasa Ramanujan: (+) ...
See Winnie Li's survey on Ramanujan's conjecture and other aspects of number theory relevant to these results. [ 5 ] Lubotzky , Phillips and Sarnak [ 2 ] and independently Margulis [ 6 ] showed how to construct an infinite family of ( p + 1 ) {\displaystyle (p+1)} -regular Ramanujan graphs, whenever p {\displaystyle p} is a prime number and p ...
In number theory, a branch of mathematics, Ramanujan's ternary quadratic form is the algebraic expression x 2 + y 2 + 10z 2 with integral values for x, y and z. [ 1 ] [ 2 ] Srinivasa Ramanujan considered this expression in a footnote in a paper [ 3 ] published in 1916 and briefly discussed the representability of integers in this form.
Lafforgue's theorem implies the Ramanujan–Petersson conjecture that if an automorphic form for GL n (F) has central character of finite order, then the corresponding Hecke eigenvalues at every unramified place have absolute value 1.
Move over, Wordle and Connections—there's a new NYT word game in town! The New York Times' recent game, "Strands," is becoming more and more popular as another daily activity fans can find on ...
The equation is = and solutions in natural numbers n and x exist just when n = 3, 4, 5, 7 and 15 (sequence A060728 in the OEIS).. This was conjectured in 1913 by Indian mathematician Srinivasa Ramanujan, proposed independently in 1943 by the Norwegian mathematician Wilhelm Ljunggren, and proved in 1948 by the Norwegian mathematician Trygve Nagell.