Search results
Results from the WOW.Com Content Network
Euler–Bernoulli beam theory (also known as engineer's beam theory or classical beam theory) [1] is a simplification of the linear theory of elasticity which provides a means of calculating the load-carrying and deflection characteristics of beams. It covers the case corresponding to small deflections of a beam that is subjected to lateral ...
The starting point is the relation from Euler-Bernoulli beam theory = Where is the deflection and is the bending moment. This equation [7] is simpler than the fourth-order beam equation and can be integrated twice to find if the value of as a function of is known.
The Euler–Bernoulli beam equation defines the behaviour of a beam element (see below). It is based on five assumptions: Continuum mechanics is valid for a bending beam. The stress at a cross section varies linearly in the direction of bending, and is zero at the centroid of every cross section.
In structural engineering and mechanical engineering, generalised beam theory (GBT) is a one-dimensional theory used to mathematically model how beams bend and twist under various loads. It is a generalization of classical Euler–Bernoulli beam theory that approximates a beam as an assembly of thin-walled plates that are constrained to deform ...
This beam has the same length as the real beam and has corresponding supports as listed above. In general, if the real support allows a slope, the conjugate support must develop shear; and if the real support allows a displacement, the conjugate support must develop a moment. The conjugate beam is loaded with the real beam's M/EI diagram.
This page was last edited on 2 December 2023, at 20:20 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
This means if the influence line for a reaction is asked for, simply start by pretending the beam is no longer attached to the reaction in question and is free to rotate about the other support. If the influence line for a moment is desired, pretend the point in question is a hinge and the subsequent two sides can rotate about their supports.
The resulting equation is of fourth order but, unlike Euler–Bernoulli beam theory, there is also a second-order partial derivative present. Physically, taking into account the added mechanisms of deformation effectively lowers the stiffness of the beam, while the result is a larger deflection under a static load and lower predicted ...