enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fermat's Last Theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_Last_Theorem

    In number theory, Fermat's Last Theorem (sometimes called Fermat's conjecture, especially in older texts) states that no three positive integers a, b, and c satisfy the equation a n + b n = c n for any integer value of n greater than 2. The cases n = 1 and n = 2 have been known since antiquity to have infinitely many solutions. [1]

  3. Gerhard Frey - Wikipedia

    en.wikipedia.org/wiki/Gerhard_Frey

    Frey at a convention in Boston, 1995. His research areas are number theory and diophantine geometry, as well as applications to coding theory and cryptography.In 1985, Frey pointed out a connection between Fermat's Last Theorem and the Taniyama-Shimura Conjecture, and this connection was made precise shortly thereafter by Jean-Pierre Serre who formulated a conjecture and showed that Taniyama ...

  4. Fermat's little theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_little_theorem

    In number theory, Fermat's little theorem states that if p is a prime number, then for any integer a, the number a p − a is an integer multiple of p. In the notation of modular arithmetic , this is expressed as a p ≡ a ( mod p ) . {\displaystyle a^{p}\equiv a{\pmod {p}}.}

  5. Safe and Sophie Germain primes - Wikipedia

    en.wikipedia.org/wiki/Safe_and_Sophie_Germain_primes

    Sophie Germain primes are named after French mathematician Sophie Germain, who used them in her investigations of Fermat's Last Theorem. [1] One attempt by Germain to prove Fermat’s Last Theorem was to let p be a prime number of the form 8k + 7 and to let n = p – 1. In this case, + = is unsolvable. Germain’s proof, however, remained ...

  6. Cyclotomic field - Wikipedia

    en.wikipedia.org/wiki/Cyclotomic_field

    In number theory, a cyclotomic field is a number field obtained by adjoining a complex root of unity to , the field of rational numbers. [1]Cyclotomic fields played a crucial role in the development of modern algebra and number theory because of their relation with Fermat's Last Theorem.

  7. Pseudoprime - Wikipedia

    en.wikipedia.org/wiki/Pseudoprime

    Fermat's little theorem states that if p is prime and a is coprime to p, then a p−1 − 1 is divisible by p. For an integer a > 1, if a composite integer x divides a x−1 − 1, then x is called a Fermat pseudoprime to base a. It follows that if x is a Fermat pseudoprime to base a, then x is coprime to a. Some sources use variations of this ...

  8. Proof of Fermat's Last Theorem for specific exponents

    en.wikipedia.org/wiki/Proof_of_Fermat's_Last...

    Fermat's Last Theorem states that no three positive integers (a, b, c) can satisfy the equation a n + b n = c n for any integer value of n greater than 2. (For n equal to 1, the equation is a linear equation and has a solution for every possible a and b.

  9. RSA (cryptosystem) - Wikipedia

    en.wikipedia.org/wiki/RSA_(cryptosystem)

    Although the original paper of Rivest, Shamir, and Adleman used Fermat's little theorem to explain why RSA works, it is common to find proofs that rely instead on Euler's theorem. We want to show that m ed ≡ m (mod n), where n = pq is a product of two different prime numbers, and e and d are positive integers satisfying ed ≡ 1 (mod φ(n)).