Search results
Results from the WOW.Com Content Network
hash HAS-160: 160 bits hash HAVAL: 128 to 256 bits hash JH: 224 to 512 bits hash LSH [19] 256 to 512 bits wide-pipe Merkle–Damgård construction: MD2: 128 bits hash MD4: 128 bits hash MD5: 128 bits Merkle–Damgård construction: MD6: up to 512 bits Merkle tree NLFSR (it is also a keyed hash function) RadioGatún: arbitrary ideal mangling ...
Linear probing is a component of open addressing schemes for using a hash table to solve the dictionary problem.In the dictionary problem, a data structure should maintain a collection of key–value pairs subject to operations that insert or delete pairs from the collection or that search for the value associated with a given key.
A perfect hash function for the four names shown A minimal perfect hash function for the four names shown. In computer science, a perfect hash function h for a set S is a hash function that maps distinct elements in S to a set of m integers, with no collisions. In mathematical terms, it is an injective function.
Cuckoo hashing is a form of open addressing in which each non-empty cell of a hash table contains a key or key–value pair.A hash function is used to determine the location for each key, and its presence in the table (or the value associated with it) can be found by examining that cell of the table.
Quadratic probing is an open addressing scheme in computer programming for resolving hash collisions in hash tables. Quadratic probing operates by taking the original hash index and adding successive values of an arbitrary quadratic polynomial until an open slot is found. An example sequence using quadratic probing is: +, +, +, +,...
The hop information bit-map indicates that item c at entry 9 can be moved to entry 11. Finally, a is moved to entry 9. Part (b) shows the table state just before adding x. Hopscotch hashing is a scheme in computer programming for resolving hash collisions of values of hash functions in a table using open addressing.
The naive solution to the problem is as follows: Initialize a counter, c, to zero, . Initialize an efficient dictionary data structure, D, such as hash table or search tree in which insertion and membership can be performed quickly. For each element , a membership query is issued.
The algorithm can be described by the following pseudocode, which computes the hash of message C using the permutation table T: algorithm pearson hashing is h := 0 for each c in C loop h := T[ h xor c ] end loop return h The hash variable (h) may be initialized differently, e.g. to the length of the data (C) modulo 256.