enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Inertia - Wikipedia

    en.wikipedia.org/wiki/Inertia

    Inertia is the natural tendency of objects in motion to stay in motion and objects at rest to stay at rest, unless a force causes the velocity to change. It is one of the fundamental principles in classical physics, and described by Isaac Newton in his first law of motion (also known as The Principle of Inertia). [1]

  3. Moment of inertia - Wikipedia

    en.wikipedia.org/wiki/Moment_of_inertia

    The moment of inertia about an axis perpendicular to the movement of the rigid system and through the center of mass is known as the polar moment of inertia. Specifically, it is the second moment of mass with respect to the orthogonal distance from an axis (or pole).

  4. List of moments of inertia - Wikipedia

    en.wikipedia.org/wiki/List_of_moments_of_inertia

    The moments of inertia of a mass have units of dimension ML 2 ([mass] × [length] 2). It should not be confused with the second moment of area, which has units of dimension L 4 ([length] 4) and is used in beam calculations. The mass moment of inertia is often also known as the rotational inertia or sometimes as the angular mass.

  5. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    For example, a free body diagram of a block sitting upon an inclined plane can illustrate the combination of gravitational force, "normal" force, friction, and string tension. [ note 4 ] Newton's second law is sometimes presented as a definition of force, i.e., a force is that which exists when an inertial observer sees a body accelerating.

  6. Parallel axis theorem - Wikipedia

    en.wikipedia.org/wiki/Parallel_axis_theorem

    The parallel axis theorem, also known as Huygens–Steiner theorem, or just as Steiner's theorem, [1] named after Christiaan Huygens and Jakob Steiner, can be used to determine the moment of inertia or the second moment of area of a rigid body about any axis, given the body's moment of inertia about a parallel axis through the object's center of gravity and the perpendicular distance between ...

  7. Tennis racket theorem - Wikipedia

    en.wikipedia.org/wiki/Tennis_racket_theorem

    The experiment can be performed with any object that has three different moments of inertia, for instance with a (rectangular) book, remote control, or smartphone. The effect occurs whenever the axis of rotation differs – even only slightly – from the object's second principal axis; air resistance or gravity are not necessary.

  8. Perpendicular axis theorem - Wikipedia

    en.wikipedia.org/wiki/Perpendicular_axis_theorem

    The perpendicular axis theorem (or plane figure theorem) states that for a planar lamina the moment of inertia about an axis perpendicular to the plane of the lamina is equal to the sum of the moments of inertia about two mutually perpendicular axes in the plane of the lamina, which intersect at the point where the perpendicular axis passes through.

  9. Poinsot's ellipsoid - Wikipedia

    en.wikipedia.org/wiki/Poinsot's_ellipsoid

    The law of conservation of energy implies that in the absence of energy dissipation or applied torques, the angular kinetic energy is conserved, so =. The angular kinetic energy may be expressed in terms of the moment of inertia tensor I {\displaystyle \mathbf {I} } and the angular velocity vector ω {\displaystyle {\boldsymbol {\omega }}}