enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Earth mass - Wikipedia

    en.wikipedia.org/wiki/Earth_mass

    An Earth mass (denoted as M 🜨, M ♁ or M E, where 🜨 and ♁ are the astronomical symbols for Earth), is a unit of mass equal to the mass of the planet Earth.The current best estimate for the mass of Earth is M 🜨 = 5.9722 × 10 24 kg, with a relative uncertainty of 10 −4. [2]

  3. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    Gravity decreases with altitude as one rises above the Earth's surface because greater altitude means greater distance from the Earth's centre. All other things being equal, an increase in altitude from sea level to 9,000 metres (30,000 ft) causes a weight decrease of about 0.29%.

  4. Mass versus weight - Wikipedia

    en.wikipedia.org/wiki/Mass_versus_weight

    Usually, the relationship between mass and weight on Earth is highly proportional; objects that are a hundred times more massive than a one-liter bottle of soda almost always weigh a hundred times more—approximately 1,000 newtons, which is the weight one would expect on Earth from an object with a mass slightly greater than 100 kilograms.

  5. Orders of magnitude (mass) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude_(mass)

    5.1 × 10 18 kg Earth's atmosphere [130] 5.6 × 10 18 kg Hyperion, a moon of Saturn [129] 10 19: 3 × 10 19 kg 3 Juno, one of the larger asteroids in the asteroid belt [131] 3 × 10 19 kg The rings of Saturn [132] 10 20: 9.4 × 10 20 kg Ceres, dwarf planet within the asteroid belt [133] 10 21 yottagram (Yg) 1.4 × 10 21 kg Earth's oceans [134 ...

  6. Weight - Wikipedia

    en.wikipedia.org/wiki/Weight

    The Earth's gravitational field is not uniform but can vary by as much as 0.5% [22] at different locations on Earth (see Earth's gravity). These variations alter the relationship between weight and mass, and must be taken into account in high-precision weight measurements that are intended to indirectly measure mass.

  7. Gravitational constant - Wikipedia

    en.wikipedia.org/wiki/Gravitational_constant

    Cavendish's stated aim was the "weighing of Earth", that is, determining the average density of Earth and the Earth's mass. His result, ρ 🜨 = 5.448(33) g⋅cm −3, corresponds to value of G = 6.74(4) × 10 −11 m 3 ⋅kg −1 ⋅s −2. It is surprisingly accurate, about 1% above the modern value (comparable to the claimed relative ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Gravitational metric system - Wikipedia

    en.wikipedia.org/wiki/Gravitational_metric_system

    Since the gravitational acceleration on the surface of the Earth can differ, one gets different values for the unit kilopond and its derived units at different locations. To avoid this, the kilopond was first defined at sea level and a latitude of 45 degrees, since 1902 via the standard gravity of 9.806 65 m/s 2 .