enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Tesla (unit) - Wikipedia

    en.wikipedia.org/wiki/Tesla_(unit)

    The tesla (symbol: T) is the unit of magnetic flux density (also called magnetic B-field strength) in the International System of Units (SI). One tesla is equal to one weber per square metre .

  3. Gyromagnetic ratio - Wikipedia

    en.wikipedia.org/wiki/Gyromagnetic_ratio

    Its SI unit is the radian per second per tesla (rad⋅s −1 ⋅T −1) or, equivalently, the coulomb per kilogram (C⋅kg −1). [citation needed] The term "gyromagnetic ratio" is often used [2] as a synonym for a different but closely related quantity, the g-factor. The g-factor only differs from the gyromagnetic ratio in being dimensionless.

  4. Gauss (unit) - Wikipedia

    en.wikipedia.org/wiki/Gauss_(unit)

    The conversion factor is 10 8 maxwell per weber, since flux is the integral of field over an area, area having the units of the square of distance, thus 10 4 G/T (magnetic field conversion factor) times the square of 10 2 cm/m (linear distance conversion factor). 10 8 Mx/Wb = 10 4 G/T × (10 2 cm/m) 2.

  5. Gaussian units - Wikipedia

    en.wikipedia.org/wiki/Gaussian_units

    One difference between the Gaussian and SI systems is in the factor 4π in various formulas that relate the quantities that they define. With SI electromagnetic units, called rationalized, [3] [4] Maxwell's equations have no explicit factors of 4π in the formulae, whereas the inverse-square force laws – Coulomb's law and the Biot–Savart law – do have a factor of 4π attached to the r 2.

  6. Orders of magnitude (magnetic field) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude...

    This page lists examples of magnetic induction B in teslas and gauss produced by various sources, grouped by orders of magnitude.. The magnetic flux density does not measure how strong a magnetic field is, but only how strong the magnetic flux is in a given point or at a given distance (usually right above the magnet's surface).

  7. g-factor (physics) - Wikipedia

    en.wikipedia.org/wiki/G-factor_(physics)

    The spin magnetic moment of a charged, spin-1/2 particle that does not possess any internal structure (a Dirac particle) is given by [1] =, where μ is the spin magnetic moment of the particle, g is the g-factor of the particle, e is the elementary charge, m is the mass of the particle, and S is the spin angular momentum of the particle (with magnitude ħ/2 for Dirac particles).

  8. Lenz's law - Wikipedia

    en.wikipedia.org/wiki/Lenz's_law

    The net work on q 1 thereby generates a magnetic field whose strength (in units of magnetic flux density (1 tesla = 1 volt-second per square meter)) is proportional to the speed increase of q 1. This magnetic field can interact with a neighboring charge q 2 , passing on this momentum to it, and in return, q 1 loses momentum.

  9. Magnetization - Wikipedia

    en.wikipedia.org/wiki/Magnetization

    l-1 i In classical electromagnetism , magnetization is the vector field that expresses the density of permanent or induced magnetic dipole moments in a magnetic material. Accordingly, physicists and engineers usually define magnetization as the quantity of magnetic moment per unit volume. [ 1 ]