Search results
Results from the WOW.Com Content Network
The boiling point of a substance is the temperature at which the vapor pressure of ... (211.95 °F)) under standard pressure at sea level, but at 93.4 °C (200.1 ...
The boiling point of water is typically considered to be 100 °C (212 °F; 373 K), especially at sea level. Pressure and a change in the composition of the liquid may alter the boiling point of the liquid. High elevation cooking generally takes longer since boiling point is a function of atmospheric pressure.
At the nominal body temperature of 37 °C (99 °F), water has a vapour pressure of 6.3 kilopascals (47 mmHg); which is to say, at an ambient pressure of 6.3 kilopascals (47 mmHg), the boiling point of water is 37 °C (99 °F). A pressure of 6.3 kPa—the Armstrong limit—is about 1/16 of the standard sea-level atmospheric pressure of 101.3 ...
The boiling point of water is the temperature at which the saturated vapor pressure equals the ambient pressure. Water supercooled below its normal freezing point has a higher vapor pressure than that of ice at the same temperature and is, thus, unstable. Calculations of the (saturation) vapor pressure of water are commonly used in meteorology.
The result is that in dilute ideal solutions, the extent of boiling-point elevation is directly proportional to the molal concentration (amount of substance per mass) of the solution according to the equation: [2] ΔT b = K b · b c. where the boiling point elevation, is defined as T b (solution) − T b (pure solvent).
At sea level, water boils at 100 °C (212 °F). For every 152.4-metre (500 ft) increase in elevation, water's boiling point is lowered by approximately 0.5 °C. At 2,438.4 metres (8,000 ft) in elevation, water boils at just 92 °C (198 °F). Boiling as a cooking method must be adjusted or alternatives applied.
Group → 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18; ↓ Period 1: H 2 20.271 K (−252.879 °C) He 4.222 K (−268.928 °C) 2: Li 1603 K (1330 °C) Be 2742 K ...
At higher altitudes, the atmospheric pressure is less than that at sea level, so boiling points of liquids are reduced. At the top of Mount Everest, the atmospheric pressure is approximately 0.333 atm, so by using the graph, the boiling point of diethyl ether would be approximately 7.5 °C versus 34.6 °C at sea level (1 atm).