enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenfunction - Wikipedia

    en.wikipedia.org/wiki/Eigenfunction

    As shown in an earlier example, the solution of Equation is the exponential = /. Equation is the time-independent Schrödinger equation. The eigenfunctions φ k of the Hamiltonian operator are stationary states of the quantum mechanical system, each with a corresponding energy E k. They represent allowable energy states of the system and may be ...

  3. Position operator - Wikipedia

    en.wikipedia.org/wiki/Position_operator

    The eigenfunctions of the position operator (on the space of tempered distributions), represented in position space, are Dirac delta functions. Informal proof. To show that possible eigenvectors of the position operator should necessarily be Dirac delta distributions, suppose that ψ {\displaystyle \psi } is an eigenstate of the position ...

  4. Eigenvalues and eigenvectors of the second derivative

    en.wikipedia.org/wiki/Eigenvalues_and...

    These formulas are used to derive the expressions for eigenfunctions of Laplacian in case of separation of variables, as well as to find eigenvalues and eigenvectors of multidimensional discrete Laplacian on a regular grid, which is presented as a Kronecker sum of discrete Laplacians in one-dimension.

  5. Stationary state - Wikipedia

    en.wikipedia.org/wiki/Stationary_state

    A harmonic oscillator in classical mechanics (A–B) and quantum mechanics (C–H). In (A–B), a ball, attached to a spring, oscillates back and forth.(C–H) are six solutions to the Schrödinger equation for this situation.

  6. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Comparing this equation to equation , it follows immediately that a left eigenvector of is the same as the transpose of a right eigenvector of , with the same eigenvalue. Furthermore, since the characteristic polynomial of A T {\displaystyle A^{\textsf {T}}} is the same as the characteristic polynomial of A {\displaystyle A} , the left and ...

  7. Degenerate energy levels - Wikipedia

    en.wikipedia.org/wiki/Degenerate_energy_levels

    Studying the symmetry of a quantum system can, in some cases, enable us to find the energy levels and degeneracies without solving the Schrödinger equation, hence reducing effort. Mathematically, the relation of degeneracy with symmetry can be clarified as follows. Consider a symmetry operation associated with a unitary operator S.

  8. Angular momentum operator - Wikipedia

    en.wikipedia.org/wiki/Angular_momentum_operator

    The angular momentum operator plays a central role in the theory of atomic and molecular physics and other quantum problems involving rotational symmetry. Being an observable, its eigenfunctions represent the distinguishable physical states of a system's angular momentum, and the corresponding eigenvalues the observable experimental values.

  9. Hellmann–Feynman theorem - Wikipedia

    en.wikipedia.org/wiki/Hellmann–Feynman_theorem

    This proof of the Hellmann–Feynman theorem requires that the wave function be an eigenfunction of the Hamiltonian under consideration; however, it is also possible to prove more generally that the theorem holds for non-eigenfunction wave functions which are stationary (partial derivative is zero) for all relevant variables (such as orbital rotations).