enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Primality test - Wikipedia

    en.wikipedia.org/wiki/Primality_test

    where f k is the k-th Fibonacci number. The first condition is the Fermat primality test using base 2. In general, if p ≡ a (mod x 2 +4), where a is a quadratic non-residue (mod x 2 +4) then p should be prime if the following conditions hold: 2 p−1 ≡ 1 (mod p), f(1) p+1 ≡ 0 (mod p), f(x) k is the k-th Fibonacci polynomial at x.

  3. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    The prime number race generalizes to other moduli and is the subject of much research; ... Note that the first of these obsoletes the ε > 0 condition on the lower bound.

  4. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    The progressions of numbers that are 0, 3, or 6 mod 9 contain at most one prime number (the number 3); the remaining progressions of numbers that are 2, 4, 5, 7, and 8 mod 9 have infinitely many prime numbers, with similar numbers of primes in each progression.

  5. Euclid's lemma - Wikipedia

    en.wikipedia.org/wiki/Euclid's_lemma

    Any prime number is prime to any number it does not measure. [note 6] Proposition 30 If two numbers, by multiplying one another, make the same number, and any prime number measures the product, it also measures one of the original numbers. [note 7] Proof of 30 If c, a prime number, measure ab, c measures either a or b. Suppose c does not measure a.

  6. Formula for primes - Wikipedia

    en.wikipedia.org/wiki/Formula_for_primes

    Rowland (2008) proved that this sequence contains only ones and prime numbers. However, it does not contain all the prime numbers, since the terms gcd(n + 1, a n) are always odd and so never equal to 2. 587 is the smallest prime (other than 2) not appearing in the first 10,000 outcomes that are different from 1. Nevertheless, in the same paper ...

  7. Fermat's little theorem - Wikipedia

    en.wikipedia.org/wiki/Fermat's_little_theorem

    In number theory, Fermat's little theorem states that if p is a prime number, then for any integer a, the number a p − a is an integer multiple of p. In the notation of modular arithmetic , this is expressed as a p ≡ a ( mod p ) . {\displaystyle a^{p}\equiv a{\pmod {p}}.}

  8. Cohn's irreducibility criterion - Wikipedia

    en.wikipedia.org/wiki/Cohn's_irreducibility...

    Cohn's irreducibility criterion is a sufficient condition for a polynomial to be ... If () is a prime number then () is irreducible in []. [1] History and extensions ...

  9. Wilson's theorem - Wikipedia

    en.wikipedia.org/wiki/Wilson's_theorem

    In algebra and number theory, Wilson's theorem states that a natural number n > 1 is a prime number if and only if the product of all the positive integers less than n is one less than a multiple of n.