enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    Download as PDF; Printable version; ... Matrix theory is the branch of mathematics that focuses on the study of matrices. ... (h 12), one admittance element (h 21), ...

  3. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    Several important classes of matrices are subsets of each other. This article lists some important classes of matrices used in mathematics, science and engineering. A matrix (plural matrices, or less commonly matrixes) is a rectangular array of numbers called entries. Matrices have a long history of both study and application, leading to ...

  4. Definite matrix - Wikipedia

    en.wikipedia.org/wiki/Definite_matrix

    In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector , where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...

  5. Linear algebra - Wikipedia

    en.wikipedia.org/wiki/Linear_algebra

    Matrix multiplication is defined in such a way that the product of two matrices is the matrix of the composition of the corresponding linear maps, and the product of a matrix and a column matrix is the column matrix representing the result of applying the represented linear map to the represented vector. It follows that the theory of finite ...

  6. Hadamard product (matrices) - Wikipedia

    en.wikipedia.org/wiki/Hadamard_product_(matrices)

    The Hadamard product operates on identically shaped matrices and produces a third matrix of the same dimensions. In mathematics, the Hadamard product (also known as the element-wise product, entrywise product [1]: ch. 5 or Schur product [2]) is a binary operation that takes in two matrices of the same dimensions and returns a matrix of the multiplied corresponding elements.

  7. Sylvester's law of inertia - Wikipedia

    en.wikipedia.org/wiki/Sylvester's_law_of_inertia

    A symmetric matrix can always be transformed in this way into a diagonal matrix which has only entries ⁠ ⁠, ⁠ + ⁠, ⁠ ⁠ along the diagonal. Sylvester's law of inertia states that the number of diagonal entries of each kind is an invariant of ⁠ A {\displaystyle A} ⁠ , i.e. it does not depend on the matrix S {\displaystyle S} used.

  8. Upgrade to a faster, more secure version of a supported browser. It's free and it only takes a few moments:

  9. Hadamard matrix - Wikipedia

    en.wikipedia.org/wiki/Hadamard_matrix

    Two Hadamard matrices are considered equivalent if one can be obtained from the other by negating rows or columns, or by interchanging rows or columns. Up to equivalence, there is a unique Hadamard matrix of orders 1, 2, 4, 8, and 12. There are 5 inequivalent matrices of order 16, 3 of order 20, 60 of order 24, and 487 of order 28.