Search results
Results from the WOW.Com Content Network
The identity matrix I n of size n is the n-by-n matrix in which all the elements on the main diagonal are equal to 1 and all other elements are equal to 0, for example, = [], = [], = [] It is a square matrix of order n, and also a special kind of diagonal matrix.
Integer matrix: A matrix whose entries are all integers. Logical matrix: A matrix with all entries either 0 or 1. Synonym for (0,1)-matrix, binary matrix or Boolean matrix. Can be used to represent a k-adic relation. Markov matrix: A matrix of non-negative real numbers, such that the entries in each row sum to 1. Metzler matrix
Let Ω(n,k) be the class of all (0, 1)-matrices of order n with each row and column sum equal to k. Every matrix A in this class has perm(A) > 0. [13] The incidence matrices of projective planes are in the class Ω(n 2 + n + 1, n + 1) for n an integer > 1. The permanents corresponding to the smallest projective planes have been calculated.
For a symmetric matrix A, the vector vec(A) contains more information than is strictly necessary, since the matrix is completely determined by the symmetry together with the lower triangular portion, that is, the n(n + 1)/2 entries on and below the main diagonal. For such matrices, the half-vectorization is
If X is a diagonal matrix, sin X and cos X are also diagonal matrices with (sin X) nn = sin(X nn) and (cos X) nn = cos(X nn), that is, they can be calculated by simply taking the sines or cosines of the matrices's diagonal components. The analogs of the trigonometric addition formulas are true if and only if XY = YX: [2]
A square matrix of order 4. The entries form the main diagonal of a square matrix. For instance, the main diagonal of the 4×4 matrix above contains the elements a 11 = 9, a 22 = 11, a 33 = 4, a 44 = 10. In mathematics, a square matrix is a matrix with the same number of rows and columns.
This gives a formula for the inverse of A, provided det(A) ≠ 0. In fact, this formula works whenever F is a commutative ring, provided that det(A) is a unit. If det(A) is not a unit, then A is not invertible over the ring (it may be invertible over a larger ring in which some non-unit elements of F may be invertible).
All matrices are assumed to have coefficients in the complex numbers. For the equation to make sense, the matrices must have appropriate sizes, for example they could all be square matrices of the same size. But more generally, A and B must be square matrices of sizes n and m respectively, and then X and C both have n rows and m columns.