enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Oligosaccharide nomenclature - Wikipedia

    en.wikipedia.org/wiki/Oligosaccharide_nomenclature

    An oligosaccharide has both a reducing and a non-reducing end. The reducing end of an oligosaccharide is the monosaccharide residue with hemiacetal functionality, thereby capable of reducing the Tollens’ reagent, while the non-reducing end is the monosaccharide residue in acetal form, thus incapable of reducing the Tollens’ reagent. [2]

  3. Reducing sugar - Wikipedia

    en.wikipedia.org/wiki/Reducing_sugar

    Reducing form of glucose (the aldehyde group is on the far right) A reducing sugar is any sugar that is capable of acting as a reducing agent. [1] In an alkaline solution, a reducing sugar forms some aldehyde or ketone, which allows it to act as a reducing agent, for example in Benedict's reagent. In such a reaction, the sugar becomes a ...

  4. Oligosaccharide - Wikipedia

    en.wikipedia.org/wiki/Oligosaccharide

    These can be visualized using mass spectrometry. The oligosaccharides found on the A, B, and H antigen occur on the non-reducing ends of the oligosaccharide. The H antigen (which indicates an O blood type) serves as a precursor for the A and B antigen. [7]

  5. Disaccharide - Wikipedia

    en.wikipedia.org/wiki/Disaccharide

    Reducing disaccharides, in which one monosaccharide, the reducing sugar of the pair, still has a free hemiacetal unit that can perform as a reducing aldehyde group; lactose, maltose and cellobiose are examples of reducing disaccharides, each with one hemiacetal unit, the other occupied by the glycosidic bond, which prevents it from acting as a ...

  6. Lacto-N-tetraose - Wikipedia

    en.wikipedia.org/wiki/Lacto-N-tetraose

    The β(1→4) linkage at the non-reducing end of lacto-N-neotetraose makes it a type II chain. Through chemical and structural characterization, it has been identified that related oligosaccharides are often modifications of a single disaccharide. This has been observed for human milk oligosaccharides, with lactose as the common sugar, and in ...

  7. Sucrase - Wikipedia

    en.wikipedia.org/wiki/Sucrase

    Sucrose is a non-reducing sugar, so will not test positive with Benedict's solution. To test for sucrose, the sample is treated with sucrase. The sucrose is hydrolysed into glucose and fructose, with glucose being a reducing sugar, which in turn tests positive with Benedict's solution. [citation needed].

  8. Cellulose 1,4-β-cellobiosidase (non-reducing end) - Wikipedia

    en.wikipedia.org/wiki/Cellulose_1,4-β...

    This enzyme catalyses the hydrolysis of (1→4)-β-D-glucosidic linkages in cellulose and cellotetraose, releasing cellobiose from the non-reducing ends of the chains. CBH1 from yeast, for example, is composed of a carbohydrate binding site, a linker region and a catalytic domain. [ 6 ]

  9. Benedict's reagent - Wikipedia

    en.wikipedia.org/wiki/Benedict's_reagent

    Benedict's reagent (often called Benedict's qualitative solution or Benedict's solution) is a chemical reagent and complex mixture of sodium carbonate, sodium citrate, and copper(II) sulfate pentahydrate. [1] It is often used in place of Fehling's solution to detect the presence of reducing sugars and other reducing substances. [2]