Search results
Results from the WOW.Com Content Network
A polygene is a member of a group of non-epistatic genes that interact additively to influence a phenotypic trait, thus contributing to multiple-gene inheritance (polygenic inheritance, multigenic inheritance, quantitative inheritance [1]), a type of non-Mendelian inheritance, as opposed to single-gene inheritance, which is the core notion of Mendelian inheritance.
Complex traits are also known as polygenic traits and multigenic traits. [1] [2] The existence of complex traits, which are far more common than Mendelian traits, represented a significant challenge to the acceptance of Mendel's work. Modern understanding has 3 categories of complex traits: quantitative, meristic, and threshold.
Polygenic inheritance refers to inheritance of a phenotypic characteristic (trait) that is attributable to two or more genes and can be measured quantitatively. Multifactorial inheritance refers to polygenic inheritance that also includes interactions with the environment.
Traits controlled by two or more genes are said to be polygenic traits. Polygenic means "many genes" are necessary for the organism to develop the trait. For example, at least three genes are involved in making the reddish-brown pigment in the eyes of fruit flies. Polygenic traits often show a wide range of phenotypes.
Pleiotropy seems limited for many traits in humans since the SNP overlap, as measured by variance accounted for, between many polygenic predictors is small. Most genetic traits are polygenic in nature: controlled by many genetic variants, each of small effect. These genetic variants can reside in protein coding or non-coding regions of the genome.
Polygenic adaptation describes a process in which a population adapts through small changes in allele frequencies at hundreds or thousands of loci. [ 1 ] Many traits in humans and other species are highly polygenic , i.e., affected by standing genetic variation at hundreds or thousands of loci.
Under the Polygenic Model, for traits, like height, to be continuous in a population there must be many genes that code for the trait. Otherwise, the expression of the trait is limited by the number of possible combinations of alleles. The many genes which code for the continuous trait are also further modified by environmental conditions. [3]
A phenotypic trait is an obvious, observable, and measurable characteristic of an organism; it is the expression of genes in an observable way. An example of a phenotypic trait is a specific hair color or eye color. Underlying genes, that make up the genotype, determine the hair color, but the hair color observed is the phenotype.