enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Discriminant - Wikipedia

    en.wikipedia.org/wiki/Discriminant

    If the discriminant is positive, the number of non-real roots is a multiple of 4. That is, there is a nonnegative integer k ≤ n/4 such that there are 2k pairs of complex conjugate roots and n − 4k real roots. If the discriminant is negative, the number of non-real roots is not a multiple of 4.

  3. Discriminant of an algebraic number field - Wikipedia

    en.wikipedia.org/wiki/Discriminant_of_an...

    The discriminant of K is 49 = 7 2. Accordingly, the volume of the fundamental domain is 7 and K is only ramified at 7. In mathematics, the discriminant of an algebraic number field is a numerical invariant that, loosely speaking, measures the size of the (ring of integers of the) algebraic number field.

  4. Sturm's theorem - Wikipedia

    en.wikipedia.org/wiki/Sturm's_theorem

    Applied to the interval of all the real numbers, it gives the total number of real roots of p. [1] Whereas the fundamental theorem of algebra readily yields the overall number of complex roots, counted with multiplicity, it does not provide a procedure for calculating them. Sturm's theorem counts the number of distinct real roots and locates ...

  5. Algebraic number field - Wikipedia

    en.wikipedia.org/wiki/Algebraic_number_field

    For this converse the field discriminant is needed. This is the Dedekind discriminant theorem. In the example above, the discriminant of the number field () with x 3 − x − 1 = 0 is −23, and as we have seen the 23-adic place ramifies. The Dedekind discriminant tells us it is the only ultrametric place that does.

  6. Vieta's formulas - Wikipedia

    en.wikipedia.org/wiki/Vieta's_formulas

    Formally, if one expands () (), the terms are precisely (), where is either 0 or 1, accordingly as whether is included in the product or not, and k is the number of that are included, so the total number of factors in the product is n (counting with multiplicity k) – as there are n binary choices (include or x), there are terms ...

  7. Resolvent (Galois theory) - Wikipedia

    en.wikipedia.org/wiki/Resolvent_(Galois_theory)

    The simplest examples of resolvents are X 2 − Δ {\displaystyle X^{2}-\Delta } where Δ {\displaystyle \Delta } is the discriminant , which is a resolvent for the alternating group . In the case of a cubic equation , this resolvent is sometimes called the quadratic resolvent ; its roots appear explicitly in the formulas for the roots of a ...

  8. Casus irreducibilis - Wikipedia

    en.wikipedia.org/wiki/Casus_irreducibilis

    Casus irreducibilis occurs when none of the roots are rational and when all three roots are distinct and real; the case of three distinct real roots occurs if and only if ⁠ q 2 / 4 ⁠ + ⁠ p 3 / 27 ⁠ < 0, in which case Cardano's formula involves first taking the square root of a negative number, which is imaginary, and then taking the ...

  9. Algebraic number theory - Wikipedia

    en.wikipedia.org/wiki/Algebraic_number_theory

    Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers , finite fields , and function fields .