Search results
Results from the WOW.Com Content Network
If the discriminant is positive, the number of non-real roots is a multiple of 4. That is, there is a nonnegative integer k ≤ n/4 such that there are 2k pairs of complex conjugate roots and n − 4k real roots. If the discriminant is negative, the number of non-real roots is not a multiple of 4.
The discriminant of K is 49 = 7 2. Accordingly, the volume of the fundamental domain is 7 and K is only ramified at 7. In mathematics, the discriminant of an algebraic number field is a numerical invariant that, loosely speaking, measures the size of the (ring of integers of the) algebraic number field.
Applied to the interval of all the real numbers, it gives the total number of real roots of p. [1] Whereas the fundamental theorem of algebra readily yields the overall number of complex roots, counted with multiplicity, it does not provide a procedure for calculating them. Sturm's theorem counts the number of distinct real roots and locates ...
For this converse the field discriminant is needed. This is the Dedekind discriminant theorem. In the example above, the discriminant of the number field () with x 3 − x − 1 = 0 is −23, and as we have seen the 23-adic place ramifies. The Dedekind discriminant tells us it is the only ultrametric place that does.
Formally, if one expands () (), the terms are precisely (), where is either 0 or 1, accordingly as whether is included in the product or not, and k is the number of that are included, so the total number of factors in the product is n (counting with multiplicity k) – as there are n binary choices (include or x), there are terms ...
The simplest examples of resolvents are X 2 − Δ {\displaystyle X^{2}-\Delta } where Δ {\displaystyle \Delta } is the discriminant , which is a resolvent for the alternating group . In the case of a cubic equation , this resolvent is sometimes called the quadratic resolvent ; its roots appear explicitly in the formulas for the roots of a ...
Casus irreducibilis occurs when none of the roots are rational and when all three roots are distinct and real; the case of three distinct real roots occurs if and only if q 2 / 4 + p 3 / 27 < 0, in which case Cardano's formula involves first taking the square root of a negative number, which is imaginary, and then taking the ...
Algebraic number theory is a branch of number theory that uses the techniques of abstract algebra to study the integers, rational numbers, and their generalizations. Number-theoretic questions are expressed in terms of properties of algebraic objects such as algebraic number fields and their rings of integers , finite fields , and function fields .