enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    The square root of 2 was likely the first number proved irrational. [27] The golden ratio is another famous quadratic irrational number. The square roots of all natural numbers that are not perfect squares are irrational and a proof may be found in quadratic irrationals.

  3. Square root - Wikipedia

    en.wikipedia.org/wiki/Square_root

    (See square root of 2 for proofs that this is an irrational number, and quadratic irrational for a proof for all non-square natural numbers.) The square root function maps rational numbers into algebraic numbers, the latter being a superset of the rational numbers).

  4. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  5. Square root of 2 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_2

    The rational root theorem (or integer root theorem) may be used to show that any square root of any natural number that is not a perfect square is irrational. For other proofs that the square root of any non-square natural number is irrational, see Quadratic irrational number or Infinite descent.

  6. Algebraic number - Wikipedia

    en.wikipedia.org/wiki/Algebraic_number

    It includes all quadratic irrational roots, all rational numbers, and all numbers that can be formed from these using the basic arithmetic operations and the extraction of square roots. (By designating cardinal directions for +1, −1, + i , and − i , complex numbers such as 3 + i 2 {\displaystyle 3+i{\sqrt {2}}} are considered constructible.)

  7. Quadratic irrational number - Wikipedia

    en.wikipedia.org/wiki/Quadratic_irrational_number

    The square root of 2 was the first such number to be proved irrational. Theodorus of Cyrene proved the irrationality of the square roots of non-square natural numbers up to 17, but stopped there, probably because the algebra he used could not be applied to the square root of numbers greater than 17. Euclid's Elements Book 10 is dedicated to ...

  8. Transcendental number - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number

    Hence, the set of real numbers consists of non-overlapping sets of rational, algebraic irrational, and transcendental real numbers. [3] For example, the square root of 2 is an irrational number, but it is not a transcendental number as it is a root of the polynomial equation x 2 − 2 = 0.

  9. Square root of 6 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_6

    Since 6 is the product of 2 and 3, the square root of 6 is the geometric mean of 2 and 3, and is the product of the square root of 2 and the square root of 3, both of which are irrational algebraic numbers. NASA has published more than a million decimal digits of the square root of six. [4]