enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of equations in gravitation - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.

  3. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    During the first 0.05 s the ball drops one unit of distance (about 12 mm), by 0.10 s it has dropped at total of 4 units, by 0.15 s 9 units, and so on. Near the surface of the Earth, the acceleration due to gravity g = 9.807 m/s 2 ( metres per second squared , which might be thought of as "metres per second, per second"; or 32.18 ft/s 2 as "feet ...

  4. Newton's law of universal gravitation - Wikipedia

    en.wikipedia.org/wiki/Newton's_law_of_universal...

    Gravity field surrounding Earth from a macroscopic perspective. Newton's law of universal gravitation can be written as a vector equation to account for the direction of the gravitational force as well as its magnitude. In this formula, quantities in bold represent vectors.

  5. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    Important formulas in kinematics define the velocity and acceleration of points in a moving body as they trace trajectories in three-dimensional space. This is particularly important for the center of mass of a body, which is used to derive equations of motion using either Newton's second law or Lagrange's equations .

  6. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    Galileo deduced the equation s = ⁠ 1 / 2 ⁠ gt 2 in his work geometrically, [4] using the Merton rule, now known as a special case of one of the equations of kinematics. Galileo was the first to show that the path of a projectile is a parabola. Galileo had an understanding of centrifugal force and gave a correct definition of momentum. This ...

  7. Rigid body dynamics - Wikipedia

    en.wikipedia.org/wiki/Rigid_body_dynamics

    In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces.The assumption that the bodies are rigid (i.e. they do not deform under the action of applied forces) simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference ...

  8. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Newton's second law generalized this hypothesis from gravity to all forces. [111] One important characteristic of Newtonian physics is that forces can act at a distance without requiring physical contact. [note 17] For example, the Sun and the Earth pull on each other gravitationally, despite being separated by millions of kilometres.

  9. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    [citation needed] In such a model one states that matter moves in certain ways in response to the curvature of spacetime, [7] and that there is either no gravitational force, [8] or that gravity is a fictitious force. [9] Gravity is distinguished from other forces by its obedience to the equivalence principle.