enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Schwarzschild's equation for radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild's_equation...

    The second term describes absorption of radiation by the molecules in a short segment of the radiation's path (ds) and the first term describes emission by those same molecules. In a non-homogeneous medium, these parameters can vary with altitude and location along the path, formally making these terms n ( s ) , σ λ ( s ) , T ( s ) , and I λ ...

  3. Heat transfer - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer

    Heat transfer is classified into various mechanisms, such as thermal conduction, thermal convection, thermal radiation, and transfer of energy by phase changes. Engineers also consider the transfer of mass of differing chemical species (mass transfer in the form of advection ), either cold or hot, to achieve heat transfer.

  4. Transport phenomena - Wikipedia

    en.wikipedia.org/wiki/Transport_phenomena

    Energy: the conduction of heat in a solid material is an example of heat diffusion. Momentum: the drag experienced by a rain drop as it falls in the atmosphere is an example of momentum diffusion (the rain drop loses momentum to the surrounding air through viscous stresses and decelerates).

  5. Radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Radiative_transfer

    Radiative transfer (also called radiation transport) is the physical phenomenon of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption, emission, and scattering processes. The equation of radiative transfer describes these interactions mathematically. Equations of ...

  6. Thermal conductance and resistance - Wikipedia

    en.wikipedia.org/wiki/Thermal_conductance_and...

    It quantifies how effectively a material can resist the transfer of heat through conduction, convection, and radiation. It has the units square metre kelvins per watt (m 2 ⋅K/W) in SI units or square foot degree Fahrenheit–hours per British thermal unit (ft 2 ⋅°F⋅h/Btu) in imperial units. The higher the thermal insulance, the better a ...

  7. General equation of heat transfer - Wikipedia

    en.wikipedia.org/wiki/General_equation_of_heat...

    For a viscous, Newtonian fluid, the governing equations for mass conservation and momentum conservation are the continuity equation and the Navier-Stokes equations: = = + where is the pressure and is the viscous stress tensor, with the components of the viscous stress tensor given by: = (+) + The energy of a unit volume of the fluid is the sum of the kinetic energy / and the internal energy ...

  8. Heat transfer physics - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_physics

    Conduction heat flux q k for ideal gas is derived with the gas kinetic theory or the Boltzmann transport equations, and the thermal conductivity is =, -, where u f 2 1/2 is the RMS (root mean square) thermal velocity (3k B T/m from the MB distribution function, m: atomic mass) and τ f-f is the relaxation time (or intercollision time period ...

  9. Thermal conduction - Wikipedia

    en.wikipedia.org/wiki/Thermal_conduction

    Thermal conduction is the diffusion of thermal energy (heat) within one material or between materials in contact. The higher temperature object has molecules with more kinetic energy; collisions between molecules distributes this kinetic energy until an object has the same kinetic energy throughout.