enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    We can also define the multiplicity of the zeroes and poles of a meromorphic function. If we have a meromorphic function =, take the Taylor expansions of g and h about a point z 0, and find the first non-zero term in each (denote the order of the terms m and n respectively) then if m = n, then the point has non-zero value.

  3. Zeros and poles - Wikipedia

    en.wikipedia.org/wiki/Zeros_and_poles

    If n > 0, then is a pole of order (or multiplicity) n of f. If n < 0, then is a zero of order | | of f. Simple zero and simple pole are terms used for zeroes and poles of order | | = Degree is sometimes used synonymously to order.

  4. Multiset - Wikipedia

    en.wikipedia.org/wiki/Multiset

    In mathematics, a multiset (or bag, or mset) is a modification of the concept of a set that, unlike a set, [1] allows for multiple instances for each of its elements.The number of instances given for each element is called the multiplicity of that element in the multiset.

  5. Bézout's theorem - Wikipedia

    en.wikipedia.org/wiki/Bézout's_theorem

    The concept of multiplicity is fundamental for Bézout's theorem, as it allows having an equality instead of a much weaker inequality. Intuitively, the multiplicity of a common zero of several polynomials is the number of zeros into which the common zero can split when the coefficients are slightly changed.

  6. Multiplicity - Wikipedia

    en.wikipedia.org/wiki/Multiplicity

    Multiplicity (informatics), a type of relationship in class diagrams for Unified Modeling Language used in software engineering; Multiplicity (mathematics), the number of times an element is repeated in a multiset; Multiplicity (software), a software application which allows a user to control two or more computers from one mouse and keyboard

  7. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    If the multiplicity m of the root is finite then g(x) = ⁠ f(x) / f ′ (x) ⁠ will have a root at the same location with multiplicity 1. Applying Newton's method to find the root of g(x) recovers quadratic convergence in many cases although it generally involves the second derivative of f(x).

  8. Intersection number - Wikipedia

    en.wikipedia.org/wiki/Intersection_number

    Let X be a Riemann surface.Then the intersection number of two closed curves on X has a simple definition in terms of an integral. For every closed curve c on X (i.e., smooth function :), we can associate a differential form of compact support, the Poincaré dual of c, with the property that integrals along c can be calculated by integrals over X:

  9. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    The multiplicity of a prime factor p of n is the largest exponent m for which p m divides n. The tables show the multiplicity for each prime factor. If no exponent is written then the multiplicity is 1 (since p = p 1). The multiplicity of a prime which does not divide n may be called 0 or may be considered undefined.