Search results
Results from the WOW.Com Content Network
In mathematics, the multiplicity of a member of a multiset is the number of times it appears in the multiset. For example, the number of times a given polynomial has a root at a given point is the multiplicity of that root.
In mathematics, a multiset (or bag, or mset) is a modification of the concept of a set that, unlike a set, [1] allows for multiple instances for each of its elements.The number of instances given for each element is called the multiplicity of that element in the multiset.
Multiplicity (chemistry), multiplicity in quantum chemistry is a function of angular spin momentum; Multiplicity (informatics), a type of relationship in class diagrams for Unified Modeling Language used in software engineering; Multiplicity (mathematics), the number of times an element is repeated in a multiset
Mathematics portal; In complex analysis (a branch of mathematics), ... If n > 0, then is a pole of order (or multiplicity) n of f. If n < 0, then ...
In mathematics, the persistence of a number is the number of times one must apply a given operation to an integer before reaching a fixed point at which the operation no longer alters the number. Usually, this involves additive or multiplicative persistence of a non-negative integer, which is how often one has to replace the number by the sum ...
The algebraic multiplicity μ A (λ i) of the eigenvalue is its multiplicity as a root of the characteristic polynomial, that is, the largest integer k such that (λ − λ i) k divides evenly that polynomial. [9] [25] [26] Suppose a matrix A has dimension n and d ≤ n distinct eigenvalues.
The concept of multiplicity is fundamental for Bézout's theorem, as it allows having an equality instead of a much weaker inequality. Intuitively, the multiplicity of a common zero of several polynomials is the number of zeros into which the common zero can split when the coefficients are slightly changed.
The notion of the multiplicity of a module is a generalization of the degree of a projective variety. By Serre's intersection formula, it is linked to an intersection multiplicity in the intersection theory. The main focus of the theory is to detect and measure a singular point of an algebraic variety (cf. resolution of singularities).