enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Persistence of a number - Wikipedia

    en.wikipedia.org/wiki/Persistence_of_a_number

    The additive persistence of 2718 is 2: first we find that 2 + 7 + 1 + 8 = 18, and then that 1 + 8 = 9. The multiplicative persistence of 39 is 3, because it takes three steps to reduce 39 to a single digit: 39 → 27 → 14 → 4. Also, 39 is the smallest number of multiplicative persistence 3.

  3. Multiplicity (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Multiplicity_(mathematics)

    We can also define the multiplicity of the zeroes and poles of a meromorphic function. If we have a meromorphic function =, take the Taylor expansions of g and h about a point z 0, and find the first non-zero term in each (denote the order of the terms m and n respectively) then if m = n, then the point has non-zero value.

  4. Multiset - Wikipedia

    en.wikipedia.org/wiki/Multiset

    In the multiset {a, a, b}, the element a has multiplicity 2, and b has multiplicity 1. In the multiset {a, a, a, b, b, b}, a and b both have multiplicity 3. These objects are all different when viewed as multisets, although they are the same set, since they all consist of the same elements.

  5. Zero-product property - Wikipedia

    en.wikipedia.org/wiki/Zero-product_property

    The ring of 2×2 matrices with integer entries does not satisfy the zero-product property: if = and = (), then = () = =, yet neither nor is zero. The ring of all functions f : [ 0 , 1 ] → R {\displaystyle f:[0,1]\to \mathbb {R} } , from the unit interval to the real numbers , has nontrivial zero divisors: there are pairs of functions which ...

  6. p-adic valuation - Wikipedia

    en.wikipedia.org/wiki/P-adic_valuation

    In number theory, the p-adic valuation or p-adic order of an integer n is the exponent of the highest power of the prime number p that divides n.It is denoted ().Equivalently, () is the exponent to which appears in the prime factorization of .

  7. Polynomial - Wikipedia

    en.wikipedia.org/wiki/Polynomial

    Rather, the degree of the zero polynomial is either left explicitly undefined, or defined as negative (either −1 or −∞). [10] The zero polynomial is also unique in that it is the only polynomial in one indeterminate that has an infinite number of roots. The graph of the zero polynomial, f(x) = 0, is the x-axis.

  8. Bézout's theorem - Wikipedia

    en.wikipedia.org/wiki/Bézout's_theorem

    The concept of multiplicity is fundamental for Bézout's theorem, as it allows having an equality instead of a much weaker inequality. Intuitively, the multiplicity of a common zero of several polynomials is the number of zeros into which the common zero can split when the coefficients are slightly changed.

  9. Rouché's theorem - Wikipedia

    en.wikipedia.org/wiki/Rouché's_theorem

    Rouché's theorem, named after Eugène Rouché, states that for any two complex-valued functions f and g holomorphic inside some region with closed contour , if |g(z)| < |f(z)| on , then f and f + g have the same number of zeros inside , where each zero is counted as many times as its multiplicity.